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The numerical tools typically used to model the evolution of fluid instabilities in inertial confinement fusion
(ICF) hydrodynamics codes are examined, and some are found to have properties which would seem to be
incompatible with the accurate modeling of small-amplitude perturbations, i.e., perturbations in the linear stage
of evolution. In particular a “differentiability condition” which is satisfied by the physics in such situations
is not necessarily satisfied by the numerical algorithms in typical use. It is demonstrated that it is possible to
remove much of the non-differentiability in many cases, and that substantial improvement in one’s ability to
accurately model the evolution of small amplitude perturbations can result. First a simple example involving a
non-differentiable radiation transport algorithm is shown, and then the non-differentiabilities introduced by the
use of upwind and “high resolution” hydrodynamics algorithms are analyzed.

I. INTRODUCTION: NUMERICALLY MODELING THE
EVOLUTION OF SMALL AMPLITUDE PERTURBATIONS

In Fig. 1 we show a schematic diagram of the problem
which motivates this paper. We seek to numerically model
the laser-driven implosion of a nearly spherically symmetric
layered target in such a way as to effect the thermonuclear
burn of of its fusible components. In particular, we wish to be
able to model the evolution of perturbations away from spher-
ical symmetry with sufficient accuracy to be able to reliably
compute the expected energy gain of the pellet. These per-
turbations, which can grow via Rayleigh-Taylor, Richtmyer-
Meshkov, and other fluid instabilities, can originate in the ini-
tial conditions of the pellet, or be impressed upon the pellet by
inhomogeneities in the laser radiation field. If they are small
enough, they will initially undergo a period of linear evolu-
tion. If they are large enough, they may eventually transition
to a more and more nonlinear regime, perhaps culminating in
driven, fully turbulent flow. We are interested here in the accu-
rate modeling of the early, linear, stages of perturbation evo-
lution, for this evolution forms the critical initial conditions
inherited by the nonlinear regime.

Although the inertial confinement fusion (ICF) pellet im-
plosion motivates our discussion, we are actually interested
in a much more general question: What are the appropriate
numerical tools to accurately model the evolution of small-
amplitude perturbations, when the unperturbed state itself
may be time-dependent, highly nonlinear, and may contain
spatial and temporal scales that are smaller than we can actu-
ally resolve, e.g., shock waves?

It is important to note that in the discussion throughout
this paper we are assuming that all of the physical features
of interest are smooth on some spatial and temporal scales,
albeit scales that may be smaller than we can afford to actu-
ally resolve numerically. Thus when we pose questions of the
physics, we assume differentiability at some finite scale ev-
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FIG. 1: Geometry of a laser-driven inertial confinement fusion (ICF)
pellet. We are interested in accurately modeling the evolution of per-
turbations to this nominally spherically-symmetric configuration.

erywhere, but when we pose numerical questions, we do not
necessarily assume that all such scales can be resolved on any
mesh that we can afford to use. Even if we are treating inter-
faces between materials, we are assuming either that there is
smoothness at some very small scale, or, equivalently, that the
imposition of smoothness on some small scale will not affect
the answers to any questions in which we have interest.

Since the above assumption of smoothness at some finite
scale may cause some readers to pause, lets us examine the
reasons that we make such an assumption here, as well as
the plausibility of the assumption. The reader will see be-
low that we predicate our analysis on the linear behavior of
additive infinitesimal perturbations, both in in the initial con-
ditions and in the subsequent evolution of the system. But a
system that contains interfaces, i.e., true discontinuities in the
state variables, either in the initial conditions or in its subse-
quent evolution, simply cannot be described in terms of ad-
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ditive perturbations unless one is using a coordinate system
that is moving with the interfaces, e.g., a Lagrangian coordi-
nate system in the case of material interfaces. Thus it could
be argued that the analysis we present below is not applica-
ble to such situations unless one is using such a coordinate
system. Nonetheless we believe strongly that the analysis we
present below is applicable. Our reasons are two. First, there
are physical dissipative processes active in all plasmas which
prevent the maintenance of discontinuities in state variables,
e.g., mass diffusion, viscosity, and conductivity. The scale
sizes produced by these mechanisms may be smaller than can
be resolved numerically, in which case a numerical simula-
tion that included these mechanisms would be virtually iden-
tical to one which did not, but the physical scale sizes are
finite nonetheless, thus making our assumptions valid. Sec-
ond, the interface instabilities in which we are interested in
general do not have their behavior significantly changed if we
approximate them as narrow but smooth transitions between
two states. This is explicitly acknowledged in the formulae we
use to approximate the growth rate of the ablative Rayleigh-
Taylor instability, for example, wherein a factor (1 + kL)−1

pre-multiplies the Rayleigh-Taylor interface growth rate term
to allow for finite plasma gradient scale length effects, where
k is the transverse Fourier wave number of the perturbation
and L is the gradient scale length ([1], pg. 62). Clearly a suf-
ficiently small but finite L has a negligible effect on the inter-
face growth rate in this instance. Another example is the fact
that accounting for physical viscosity and heat conduction in
the compressible fluid equations near a shock wave broadens
the shock front, but does not change the shock’s propagation
speed or the jumps across the shock front. (This is even true
numerically as well as physically if we use numerical meth-
ods which conserve mass, momentum and total energy at the
discrete level, as we do here.) Nonetheless, the reader should
be cognizant of the fact the the arguments we present below
cannot be rigorously shown to be applicable to situations in
which true discontinuities exist.

II. THE LINEAR EVOLUTION OF INFINITESIMAL
PERTURBATIONS: THE DIFFERENTIABILITY

CONDITION

We will frame our discussion within that of systems of con-
servation laws, which take the form

∂qi(x, t)
∂ t

+ ∇·fi(q1,q2, . . . ,qm,x,t) = 0; i = 1,m (1)

where x and t are space and time respectively, and m is the
number of conservation laws in the system. Examples of
such equations include the Navier-Stokes equations, the equa-
tions of magnetohydrodynamics (MHD), the Vlasov equation,
passively-driven convection, and, of course, our ICF pellet im-
plosion scenario.

As we have stated before, we shall assume that the initial
conditions q(x,0) are smooth at some sufficiently small spa-
tial scale, and that there is present in the physics some dissipa-
tive mechanism active at some finite but perhaps small spatial

and temporal scales to ensure that the solution q(x,t) is also
smooth at those scales. We do not, however, assume that we
can actually resolve all such scales numerically.

The above notwithstanding, we will try to impose on our
numerical algorithms the following property of the physics:
If we confine our perturbation to that of the initial condition
t = 0, then in the limit of vanishing perturbation amplitudes
about virtually any unperturbed time-evolving system, there
exists a constant of proportionality between any component
of the initial perturbation and any other component of the
evolved perturbation at some fixed later time. This constant
of proportionality is precisely the partial derivative of the lat-
ter with respect to the former.

In particular the following “linearity” property holds: We
define a physical time evolution operator T which advances
the physical solution in time from t = 0 to t = t f :

q(t f ) = T (q(0)) (2)

where we have dropped the notational dependence of q on x
for clarity. We do the same for the perturbation quantities p 1
and p2 below.

For the laser-driven ICF problem of interest here, T is a
nonlinear differentiable operator on q, i.e., q(t f ) is a differen-
tiable function of q(0), unless we find ourselves at a bifurca-
tion point in chaotic flow. For the purposes of this paper we
assume that we are not at such a bifurcation point.

We now introduce infinitesimal perturbations p1(x) and
p2(x) to the initial conditions. From the differentiability of
T and the assumption that p1(x) and p2(x) are infinitesimal it
follows that in the limit of vanishing perturbation amplitudes:

T (q+ α p1)−T(q) = α(T (q+ p1)−T(q)) (3)

where α is a scalar, and

T (q+ p1 + p2)−T (q) = T (q+ p1)+T (q+ p2)−2T (q) (4)

where we have dropped the notational dependence of p 1 and
p2 on x for clarity.

Equations (3) and (4) above define a perturbation evolution
that is normally described as “linear.” They apply whether the
growth or decay of the perturbation is exponential in time, as
it is for the Rayleigh-Taylor instability, or has some other time
dependence, as is the case for the Richtmyer-Meshkov insta-
bility. The terminology aside, they describe the physical be-
havior of infinitesimal perturbations to the basic flow defined
by T (q). It is the primary thesis of this paper that a neces-
sary, or at least highly desirable, condition for the success-
ful numerical modeling of the evolution of extremely small
perturbations to a specified physics problem, like that of the
imploding ICF pellet, is that the numerical time evolution op-
erator Tn satisfy the very same equations. Henceforth, when a
given numerical time evolution operator Tn satisfies equations
(3) and (4), we shall say that that Tn satisfies the “differentia-
bility condition.” Surprisingly perhaps, many of the numerical
methods in use in modern ICF codes fail this test.
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III. NON-DIFFERENTIABLE ALGORITHMS IN MODERN
ICF CODES

In the last section we put forth the thesis that a numer-
ical time evolution operator Tn should satisfy the differen-
tiability condition, i.e., satisfy equations (3) and (4), if we
wish to accurately model the evolution of small perturba-
tions to a physical system. A legitimate question for any-
one not fully familiar with ICF codes might be the follow-
ing: How could such non-differentiability possibly find its
way into such codes? Looking at Eq. (1), we see that our
numerical task is simply to perform discretizations of spatial
and temporal derivatives. Certainly the obvious finite differ-
ence and finite element formulations of such derivatives do
not introduce any non-differentiability, so barring any inher-
ent non-differentiability in the equations themselves, where
could such non-differentiability possibly originate? Rather
than attempting to answer this question comprehensively, let
us simply list some of the places where one might find a lack
of differentiability in such codes:

1. “High resolution” numerical algorithms for fluid dy-
namics, sometimes known as “modern front-capturing
methods” or ‘modern shock-capturing methods.”

2. Upwind methods for fluid dynamics (at sonic points)

3. “Sharp cutoff” flux limiters for thermal conductivity,
and for radiation diffusion

4. Linear interpolation in table lookups for equation of
state data and opacities

The non-differentiability associated with the last item above
will hopefully be obvious to the reader, as will the fact that
creating a table lookup interpolation procedure with contin-
uous derivatives, that also avoids the possibility of spurious
interpolated values, may be a challenging problem for some
data sets. The remaining three items will be explored in the
following sections.

A. Symptoms of Numerical Non-differentiability

An infinitesimally perturbed solution that encounters a
point of non-differentiability will exhibit a false nonlinear re-
sponse of some kind. A pure Fourier mode in a periodic
problem may not remain pure, for example. This can only
happen if the numerical algorithm used has points of non-
differentiability inside an “envelope” of the solution space
spanned by the unperturbed solution on the one hand and
by its perturbed counterpart on the other. In that case, the
perturbed solution must at some point in its history have
“crossed” a point of non-differentiability, perhaps many times
if the perturbation is oscillatory in space or time, seeing one
derivative on one side of the crossing point, and another on the
other. Clearly as the amplitude of the perturbation becomes
smaller and smaller, the envelope in solution space in which
the point of non-differentiability must reside becomes smaller

and smaller. Thus, unless a point of non-differentiability re-
sides directly on the unperturbed solution, one can easily be-
come just plain “lucky” in any given calculation, with no
symptoms at all, and yet encounter a major “glitch” with the
same numerical software on a modestly different problem. We
will see an example of this in a later section. On the other
hand, even if a point of non-differentiability is encountered,
the result may or may not be harmful, or even measurable.
This will clearly depend on many factors, including the size
and location of the point of non-differentiability.

Thus, by simply running computational examples with var-
ious algorithms, as we do here, it will be impossible to
prove that the reason an algorithm failed is that it was non-
differentiable, or that the reason another succeeded was that it
was differentiable. All we can do here is try to lend some em-
pirical plausibility to our hopefully plausible hypothesis. Our
task is made all the more difficult by the fact that it is prob-
ably impractical to construct real ICF codes with algorithms
that are completely differentiable over all of solution space.

B. An Example of the Effects of Numerical
Non-differentiability

As we have stated previously, one of the possible sources
of non-differentiability in ICF codes is the use of sharp cut-
off radiation diffusion and thermal conductivity flux limiters.
We refer the reader to ([2], pp 478-481) for the motivation and
form of such flux limiters in the radiation diffusion case, the
case we shall examine in this section. Briefly, the diffusion
approximation used in many ICF codes can produce fluxes of
radiant energy F(s) that exceed what is physically possible
Fmax(s). Here s represents all of the parameters on which F
may depend, e.g., the local radiation energy density gradient
and Rosseland mean opacity. In that case, one of the remedies
is to limit the flux F(s) so that it does not exceed F max(s). The
obvious “sharp cut-off” solution is simply

F(s) = min(F(s),Fmax(s)) (5)

Clearly Eq.(5) defines a flux which is a non-differentiable
function of its arguments at all values of s for which F(s) =
Fmax(s). An alternative flux limiter is the so-called “harmonic
mean” limiter:

F(s) = F(s)/(1+F(s)/Fmax(s)) (6)

which is a differentiable function of its arguments. These are
the two flux limiters that we examine below.

In Figures 2 and 3, we show the results of a pair of 2D
r− θ laser pellet implosion simulations using the Naval Re-
search Laboratory’s (NRL’s) FAST code [3]. The pellet and
imposed laser intensity profile are described in [4]. Briefly,
the pellet is a pure deuterium-tritium (DT) shell of outer ra-
dius 0.169 cm and thickness 0.034 cm, driven by 0.351 µm
wavelength laser radiation at an intensity of 10 TW for the
first 4 nsec, and ramping monotonically to 450 TW at 6.05
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Run95 Harmonic Mean Radiation Flux Limiter
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FIG. 2: Legendre mode amplitude of areal mass density vs. time for
a FAST run of a NIF pellet using an extremely small Legendre l = 2
perturbation, and using a harmonic mean (differentiable) radiation
flux limiter. The Legendre spectrum should, and is, dominated by
the nearly static seed perturbation during this early-time evolution.
The seed mode is plotted as a thick line with embedded “+” symbols,
while the other Legendre modes are plotted as simply thin lines

nsec, where it stays until laser turn-off at 8.6 nsec. A single
l = 2 Legendre mode perturbation of extremely small ampli-
tude is imposed on the outer surface. The quantity of interest
is the integrated (in r) areal mass density as a function of θ ,
here analyzed in Legendre space. We calculate only the very
early time behavior here, terminating the simulation shortly
after the first main shock has broken out through the interior
surface of the pellet. The physics is such that one should see
a nearly static evolution of the l = 2 mode, with little or no
generation of other Legendre modes during this early phase
of the pellet implosion. In Fig. 2 we show Legendre mode
amplitude vs. time for a calculation which used the harmonic
mean radiation diffusion flux limiter Eq. (6) , which is a dif-
ferentiable function of its arguments. Note that the behavior of
the Legendre modes is qualitatively what we expect: a nearly
static seed mode, with small amplitudes maintained for all the
other modes. In Fig. 3 we show the results for a simulation
which was identical to that in Fig. 2, except that we are now
using the sharp cut-off version of the radiation diffusion flux
limiter Eq. (5), which is a not a differentiable function of its
arguments. Note the dramatic difference in the results, with
the unphysical generation of higher order harmonics which
eventually drive even the primary l = 2 mode away from its
physically correct amplitude.

This one simple example makes it clear that non-
differentiable numerical algorithms are a potential serious
threat to the accuracy of simulations of small-amplitude per-
turbations on ICF laser pellets.

IV. UPWIND METHODS AND “HIGH RESOLUTION”
METHODS AS SOURCES OF NON-DIFFERENTIABILITY

While we again wish to emphasize that any source of nu-
merical non-differentiability should be viewed as a threat to
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FIG. 3: Same as Fig. 2, but using a sharp cut-off (non-differentiable)
radiation flux limiter. Note the quick non-physical rise of other
Legendre modes, a numerical artifact caused by the use a non-
differentiable numerical algorithm.

accuracy, we will for the remainder of this paper focus on
hydrodynamics algorithms. Specifically, we will investigate
the first two sources of non-differentiability from our list in
the previous section: “high resolution” methods and upwind
methods. The use of these methods as opposed to standard
(differentiable) finite difference and finite element methods
derives from the same need: the need to robustly deal with
structures too small to be resolved on any reasonable spatial
or temporal mesh, as we explore in the paragraphs that follow.

As we stated in our assumptions, as long as there is some
dissipative mechanism active at some finite but perhaps small
scales, solutions to (1) with smooth initial conditions will re-
main smooth for all time. However, in many such systems,
including compressible fluid dynamics, the system can and
often does evolve in such a way to produce small regions over
which the solution or its derivatives can change dramatically.
If these regions are smaller than a mesh size, from a numer-
ical viewpoint we are treating discontinuities. We will term
such unresolved regions “fronts” for the purpose of this paper.
Given that we do not wish to actually resolve these fronts, we
demand instead that they be represented numerically as nar-
row regions on our grid without numerical artifacts that con-
taminate adjacent regions, that they propagate with the correct
speed, and that the jumps across them are physically correct.
In most cases this situation is addressed by the Lax-Wendroff
Theorem ([5]), which states that if one’s numerical approxi-
mation to Eq. (1) is in “flux” or “conservation” form, and the
solution converges everywhere but on a set of measure zero to
some solution, and in addition satisfies an entropy inequality,
then the above demands will be met. Thus the great majority
of methods designed to treat fronts in the context of Eq. (1)
are in conservation form, i.e., a form consisting of numerical
fluxes connecting adjacent grid points, these fluxes being used
to advance the numerical solution in time.

Using conservation form does not by itself give the desired
result however, since one still needs to compute a convergent
solution. In general, numerical methods not designed to deal
with fronts will not produce the desired convergence in their
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presence, often producing numerical oscillations that degrade
the solution severely. Most often, successful methods use
some sort of explicit or implicit artificial numerical dissipa-
tion to achieve such convergence.

Over the past 30 years a host of algorithms, known vari-
ously as “modern front-capturing methods,” “modern shock-
capturing methods,” or “high resolution methods,” have been
developed in an attempt to perform calculations containing
fronts more accurately and more efficiently than with the more
traditional artificial dissipation approaches. The first of these
methods was flux-corrected transport (FCT) [6, 7], but there
are now a large number of others (e.g, MUSCL [8], PLM [9],
PPM [10], ENO [11], WENO [12, 13], TVD [14] methods,
and Discontinuous Galerkin (DG) methods [15] ). What dis-
tinguishes the “high resolution” methods from their predeces-
sors is their attempt to constrain the numerical fluxes, grid
point by grid point and timestep by timestep, in such a way
as to avoid the production of unphysical values in the solution
vector q.

A well-known theorem by Godunov [16] states that any
linear algorithm that guarantees the avoidance of unphysical
values renders the algorithm at most first order accurate in
time and space. Thus all modern front-capturing algorithms
of order greater than one must be inherently nonlinear opera-
tors. However, almost without exception, these modern front-
capturing methods involve the use functions that are not just
nonlinear, but non-differentiable as well, using min, max, abs,
and sign operators, as well as similar functions involving
if-then-else statements. Thus at a fundamental level, time
evolution operators incorporating such algorithms are non-
differentiable functions of their arguments. Compounding the
above sources of non-differentiability is the fact that many of
these algorithms use upwind algorithms, which have their own
set of non-differentiabilities, as building blocks. In particular,
the numerical fluxes associated with upwind methods are non-
differentiable functions of the hydrodynamic wave speeds, at
all points at which such wave speeds vanish in the frame of
reference of the grid. (These are the places in the flow where
u− c, u, and u + c vanish, where c is the local sound speed
and u is the local fluid speed. We shall use a loose defini-
tion here, and call all such points “sonic points.”) Thus the
use of even simple first order upwind methods like Godunov’s
method [16] would seem to be at odds with our desire to ac-
curately model the evolution of small amplitude perturbations,
with the “high resolution” methods being riskier still. Let us
therefore perform some numerical experiments to see if we
can determine just how risky some of these methods may be
in the context of our laser pellet implosion problem.

The algorithms we choose for investigation, in order of in-
creasing differentiability, are

• The Piecewise Linear Method (PLM) of Colella and
Glaz [9] (non-differentiable whenever the slope limiter
is active, and at all sonic points)

• The first-order Godunov method [16] (non-
differentiable at all sonic points)

• A first order donor cell method plus a Richtmyer-Von

Pellet Material
Density = 0.25 gm/cc

Incoming Laser

3x1013
 watts/cm2

Pellet Vapor

Density =

 0.0002 gm/cc

Perturbed Interface

FIG. 4: Geometry of laser-driven pellet test problem.

Neumann artificial viscosity (non-differentiable only at
entropy wave (u = 0) sonic points)

• The Richtmyer two-step Lax-Wendroff algorithm ([17],
pp. 302-303)(differentiable everywhere)

Note that only the Lax-Wendroff method is truly differen-
tiable.

V. A NUMERICAL TEST PROBLEM

We choose as our test case a simplified version of the early-
time pellet implosion problem. As depicted in Fig. 4, a semi-
infinite slab of a monatomic ideal gas at one atmosphere pres-
sure and a density of 0.25 g/cm3 is irradiated uniformly from
the right with 0.35 micron laser radiation, with an intensity of
3 x 1013 W/cm2, starting at t = 0 and lasting indefinitely. A
simple 2D code that we dubbed “Sandbox” was written which
incorporated the three most critical physics modules, which
were applied using operator splitting:

• Laser absorption via inverse Bremsstrahlung, using the
prescription of Johnson and Dawson [18], modified to
ensure differentiability.

• Spitzer-Harm thermal conductivity [19] without flux
limiting (again to ensure differentiability)

• one-dimensional hydrodynamics algorithms applied to
two dimensions using operator splitting

The two-dimensional calculation was then performed on a
800x16 grid using grid spacings of 0.1 microns and 1.5 mi-
crons in the x and y directions respectively.

The interface between the pellet material and its vapor is
placed at the midpoint in a cell, ensuring that for sufficiently
small interface perturbations, the numerical perturbation will
take the form of additive density perturbations to the numeri-
cal grid quantities. (Recall that our definition of differentiabil-
ity is with reference to additive perturbations.) A sinusoidal
perturbation of wavelength 24 microns is applied to the po-
sition of the interface, with an amplitude of 0.0005 microns.
This amplitude is sufficiently small that physical nonlinear ef-
fects should be extremely small, and the response of the sys-
tem to the perturbation should be linear to many orders of
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magnitude. The physics is such that, after some initial tran-
sients, a quasi-steady ablation region approximately 1.7 mi-
crons wide establishes itself, propagating into the pellet ma-
terial as ablated low density material is blown off toward the
incoming laser. A strong shock propagates away from the ab-
lation region into the pellet. Both the ablation region and, to
a lesser extent, the shock are regions of strong perturbation
evolution.

Analysis of this perturbation problem by Velikovich et al.
[20] and by Goncharov et al. [21] reveals that the evolu-
tion can be described in terms of a quantity that can be mea-
sured experimentally, the integrated mass density M(y) along
the laser path. M(y) starts and remains a constant plus a
small sinusoid. Plotting the sinusoid’s amplitude as a func-
tion of time reveals semi-periodic nulls at which phase rever-
sal takes place. At any given moment in time during a calcu-
lation, we should be able to compute M(y), and compute its
Fourier transform. If our calculation is performing properly,
we should see a DC component, and one other finite amplitude
component at the seed mode wavelength. The amplitude of
all other Fourier modes should be due solely to nonlinear cou-
pling terms, second and higher order in the perturbation am-
plitude, and hence extremely small given the extremely small
perturbation amplitudes we are using here. Thus in the fol-
lowing plots we use the following definitions:

• “Seed Amplitude” is simply the amplitude of the seed
mode as given by the numerical Fourier transform of
M(y).

• “Noise” is the result of numerically removing from
M(y) both the DC component and the seed mode, and
taking the maximum absolute value of the remaining
values. Note that this is an extremely sensitive mea-
sure of “noise.” In fact, sufficiently small levels of
“noise” may in fact represent physically correct second
and higher order nonlinear coupling terms, as we men-
tion above.

VI. NUMERICAL TESTS OF HYDRODYNAMICS
ALGORITHMS IN 2D PLANAR GEOMETRY

The Sandbox code has been used to run many tests of nu-
merical hydrodynamics algorithms. Here we have chosen just
five of those calculations which illustrate the potential benefits
of maximizing differentiability in such algorithms.

• Test 1: Godunov hydrodynamics used for both the x and
y directions.

• Test 2: Godunov hydrodynamics used for both the x and
y directions, with multidimensional Colella-Woodward-
Lapidus artificial dissipation used in both directions
(see discussion below)

• Test 3: Godunov hydrodynamics used for the x direc-
tion and Lax-Wendroff used for the y direction, with no
additional artificial dissipation.

Pure Godunov in x and y
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FIG. 5: Seed mode amplitude (line) and noise amplitude (“+” sym-
bols) versus time for a simulation using the Godunov algorithm in
both the x and y directions.

• Test 4: PLM used for both the x and y directions, with
no additional artificial dissipation..

• Test 5: PLM used for the x direction and Lax-Wendroff
used for the y direction, with no additional artificial dis-
sipation.

Test 1 In Fig. (5 we show the seed mode amplitude and
noise amplitude versus time for Test 1. Although the seed
mode behaves correctly (see below) for the first half of the
simulation, its amplitude is thereafter exceeded by that of
the noise, and it exhibits incorrect behavior after that point.
Our diagnosis is that the Godunov’s non-differentiability at all
sonic points gives rise to this false nonlinear behavior, making
it an inappropriate choice for the accurate modeling of small
amplitude perturbations for this problem.

Test 2 If our diagnosis of the problems seen in Test 1
is correct, we need to eliminate some of regions of non-
differentiability in our algorithms if we are to have any hope
of solving our problem accurately. We will do that below,
but first let us look at another possible diagnosis of the above
problem: that we are witnessing the symptoms of the “car-
buncle phenomenon” [10, 23] This term refers to the diffi-
culty that upwind methods like the Godunov method have
when dealing with perturbed shock waves traveling parallel
or nearly parallel to one of the mesh lines of a grid, precisely
the situation we have here. While the true causes of the phe-
nomenom are still a subject of debate, the “cure” is nearly al-
ways to add an extra amount of artificial dissipation transverse
to the shock propagation direction. Indeed, Colella and Wood-
ward [10] suggest a multidimensional variant of Lapidus arti-
ficial dissipation which closely resembles most of the reme-
dies suggested by more modern papers. Thus, in Fig. 6 we
show the results of simply adding that dissipation to the algo-
rithm used in Test 1. We see that the “carbuncle” hypothesis
seems to be plausible: there are two clean phase reversals, and
the seed mode amplitude is decreasing in time, in accordance
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Godunov plus CWL Dissipation in x and y
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FIG. 6: Seed mode amplitude (line) versus time and noise ampli-
tude (“+” symbols) versus time for a simulation using the Godunov
algorithm in both the x and y directions. Extra Colella-Woodward-
Lapidus artificial dissipation was added in both directions. The line
labeled “Peak 3 Amp” indicates the expected value of the third tem-
poral maximum in the seed mode amplitude, near 3 nsec, using the
analytic techniques of [22]. Note that although our results show good
clean linear evolution, with the expected two phase reversals in the
time interval, we are nonetheless also showing considerable false nu-
merical damping of the seed mode in time.

the the semi-analytic results of [22], which predicts a slow de-
cay of the seed mode in time, with two phase reversals in the
interval between 0 and 3.0 nsec. More importantly, except in
the vicinity of the phase reversal points, our signal-to-noise ra-
tio is roughly 105 to 1, indicating that our pure Fourier mode is
remaining pure, i.e., that the code is responding in the differ-
entiable/linear manner that it should. However, we also note
in the figure that the simulation is predicting a damping of the
seed mode amplitude in time that is considerably larger than
we expect from the semi-analytic results. We return to this
point later.

Test 3 Instead of the “carbuncle” diagnosis of the problems
encountered in Test 1, which dictates a “cure” of increased
numerical dissipation, let us now pursue a solution based on
our hypothesis of non-differentiability as the cause of Test 1’s
difficulties: We know that the only non-differentiable points
for the Godunov method are the sonic points, which exist in
both the x and y directions. We also know that our perturba-
tion is extremely small, meaning that the “envelope” in so-
lution space in which our numerical solution will encounter
problems will be correspondingly small, unless of course the
unperturbed solution itself rests directly on one of the sonic
points. A little reflection by the reader will hopefully convince
him or her that in the x direction we would have to be quite
unlucky for one of our numerical flux evaluation points to fall
inside the envelope. But in the y direction, the unperturbed
solution sits directly on the entropy wave sonic point, since
for the unperturbed solution uy = 0 everywhere. Thus if our
perturbed solution is oscillatory in space, which it is, we can-
not escape being caught in the envelope every single timestep.

Godunov in x, Lax-Wendroff in y
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FIG. 7: Seed mode amplitude (line) versus time and noise ampli-
tude (“+” symbols) versus time for a simulation using the Godunov
algorithm in the x direction and the Lax-Wendroff method in the y
direction. No extra artificial viscosity was added in either direction.
The line labeled “Peak 3 Amp” indicates the expected value of the
third temporal maximum in the seed mode amplitude, near 3 nsec,
using the analytic techniques of [22]. Note that we have achieved the
same clean results as in Test 2, and at the same time have been able
to maintain the amplitude of the seed mode near the value given by
theory.

This reasoning would suggest that we may be able to address
Test 1’s problems by using a differentiable algorithm in the y
direction. Since the solution is, for these early times, smooth
in that direction, we can and do choose the fully differentiable
Lax-Wendroff method. Note that we are suggesting a solu-
tion which is in exactly the opposite direction from that given
by the usual “carbuncle” remedy: By changing from the Go-
dunov method to the Lax-Wendroff method we are removing
large amounts artificial dissipation rather than adding it. In
Fig. (7) we show the results of that experiment. Note that the
results are even better than those of Test 2. Not only are our
signal-to-noise ratios roughly 105 to 1, but the seed mode am-
plitude near 3 nsec is much higher, in very close agreement to
that given by theory.

We again point out that we have arrived at two totally dis-
parate approaches to remedying the problems of the Godunov
method in Test 1: 1) adding dissipation in the y direction; and
2) removing non-differentiability in the y direction, and in the
process removing dissipation in the y direction. We hypothe-
size here that the first remedy is nothing more than a cosmetic
fix, hiding the true cause of the “carbuncle” phenomenon un-
der a mountain of numerical dissipation. Addressing the prob-
lem in terms of its true cause, i.e., failure to satisfy the differ-
entiability condition, is by far the better approach, yielding a
clean linear response without the side effects of large amounts
of numerical dissipation.

Tests 4 and 5 Although we do not include the figures here,
we will describe the results. The reader may see that Tests
4 and 5 are merely the higher order variants of Tests 1 and 3
respectively. They yield similar results, with Test 4 showing
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unacceptable growth of noise in the time interval 0 to 3 nsec,
and Test 5, despite the added but improbably crossed non-
differentiabilities added by the use of PLM in the x-direction,
yielding good clean results, albeit with signal-to-noise ratios
in the 103 to 1 range, as opposed to the 105 to 1 range of Test
3. Thus it would appear that even the more modern “high res-
olution” methods can sometimes be used, at least in circum-
stances where the risk incurred by their failure to satisfy the
differentiability condition is small. The user of such methods
must still be wary however, for they can and will occasionally
trip over their own points of non-differentiability. We look
forward to the future development of “high resolution” meth-
ods that are free of such points. Note that the development
of “high resolution” methods satisfying the differentiability
condition is not precluded by Godunov’s Theorem, since the
theorem merely demands that such algorithms be nonlinear,
not that they be non-differentiable.

We have also run similar tests in radial geometry, not shown
here, wherein shocks can focus and reflect from the origin, and
we find there an increase in sensitivity to non-differentiability.
We have found at least one case where our perturbed solution
crosses, albeit “unluckily,” a u + c sonic point in the radial
direction, causing a catastrophic disruption of linearity at all
subsequent times. However, if we simply reverse the sign of
the l = 2 Legendre mode perturbation, we get “lucky” again.
We alerted the reader of this possibility in an earlier section.
In that case we were able to restore proper behavior by replac-
ing the Godunov algorithm in the radial direction, which has
non-differentiabilities at all sonic points, with the previously-
described donor cell algorithm, which is non-differentiable
only at u = 0 sonic points.

VII. CONCLUSIONS

We have put forth the hypothesis that a highly desirable
condition for the accurate numerical modeling of small per-

turbations imposed on a system of conservation laws is that
the numerical time evolution operator satisfy a differentiabil-
ity condition. The numerical experiments that we present here
strongly support that hypothesis. Indeed much of the effort
that we have exerted over the past few year in trying to ensure
that NRL’s FAST code [3] properly models small-amplitude
perturbations has been driven by this design principle. We
will be reporting on the results of that effort elsewhere.

However, it must be pointed out here that even if our hy-
pothesized need to satisfy a differentiability condition is cor-
rect, the algorithms we have used here to meet that condi-
tion, i.e., using a different hydrodynamics algorithm along the
shock propagation direction than transverse to it, only address
the needs of the ICF pellet implosion problem in the early
stages of its evolution, when the fronts are nearly aligned with
the transverse direction. As the perturbations enter the fully
nonlinear regime, the need for a front-capturing method in the
transverse direction will probably arise, pushing us again back
in the direction of using non-differentiable algorithms. Our
empirical experience in this regime suggests that the situation
is not as bleak as it sounds, for we have thus far found differ-
entiability to be far less critical an issue when endeavoring to
model the evolution of large amplitude perturbations, i.e., per-
turbations in the nonlinear regime, than small ones. Nonethe-
less we would prefer not to rely on this experience. Our hope
is that the future will bring forth the development of “high res-
olution” methods satisfying the differentiability condition, as
we discussed in the last section, giving us the robustness of
the present methods in the presence of fronts, combined with
the differentiability we need to properly model the evolution
of small perturbations.

[1] J. D. Lindl, Inertial Confinement Fusion (Springer-Verlag, New
York, 1998).

[2] D. Mihalis and B. Weibel-Mihalas, Foundations of Radiation
Hydrodynamics (Dover, New York, 1999).

[3] J. H. Gardner, A. J. Schmitt, J. P. Dahlburg, C. J. Pawley, S. E.
Bodner, S. P. Obenschain, V. Serlin, and Y. Aglitskiy, Phys.
Plasmas 5, 1935 (1998).

[4] A. J. Schmitt, A. L. Velikovich, J. H. Gardner, C. Pawley, S. P.
Obenschain, Y. Aglitskiy, and Y. Chan, Phys. Plasmas 8, 2287
(2001).

[5] P. D. Lax and B. Wendroff, Comm. Pure Appl. Math. 13, 217
(1960).

[6] J. P. Boris, in Computing as a Language of Physics (Interna-
tional Atomic Energy Commission, 1971), pp. 171–189.

[7] J. P. Boris and D. L. Book, J. Comput. Phys. 11, 38 (1973).
[8] B. van Leer, J. Comput. Phys. 32, 101 (1979).
[9] P. Colella and H. M. Glaz, J. Comput. Phys. 59, 264 (1985).

[10] P. Colella and P. R. Woodward, J. Comput. Phys. 54, 174
(1984).

[11] A. Harten, B. Engquist, S. Osher, and S. R. Chakravarthy, Jour-

nal of Computational Physics 71, 231 (1987).
[12] G. S. Jiang and C. W. Shu, J. Comput. Phys. 126, 202 (1996).
[13] S. Liu and T. Chan, J. Comput. Phys. 115, 200 (1994).
[14] A. Harten, SIAM Journal on Numerical Analysis 21, 1 (1984).
[15] B. Cockburn and C. W. Shu, J. Comput. Phys. 141, 199 (1998).
[16] S. K. Godunov, Matematicheskii Sbornik 47, 271 (1959).
[17] R. Richtmyer and K. Morton, Difference Methods for Initial

Value Problems, 2nd ed. (Interscience, New York, 1967).
[18] T. W. Johnson and J. M. Dawson, Phys. Fluids 16, 722 (1973).
[19] L. Spitzer, Jr., Physics of Fully Ionized Gases, 2nd Revised Ed.

(Interscience Publishers, New York, 1962).
[20] A. L. Velikovich, J. P. Dahlburg, J. H. Gardner, and R. J. Taylor,

Phys. Plasmas 5, 1491 (1998).
[21] V. N. Goncharov, Phys. Rev. Lett. 82, 2091 (1999).
[22] Y. Aglitskiy, A. L. Velikovich, M. Karasik, V. Serlin, C. J. Paw-

ley, A. J. Schmitt, S. P. Obenschain, A. N. Mostovych, J. H.
Gardner, and N. Metzler, pp 9, 2264 (2002).

[23] J. Quirk, Int. J. Numer. Meth. Fluids 18, 555 (1994).


