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Abstract

The feedout process transfers mass perturbations from the rear to the front surface of a

driven target, producing the seed for the Rayleigh-Taylor (RT) instability growth. The feedout

mechanism is investigated analytically and numerically for the case of perturbation wavelength

comparable to or less than the shock-compressed target thickness. The lateral mass flow in the

target leads to oscillations of the initial mass non-uniformity before the reflected rippled

rarefaction wave breaks out, which may result in RT bubbles produced at locations where the

areal mass was initially higher. This process is determined by the evolution of hydrodynamic

perturbations in the rippled rarefaction wave, which is not the same as the Richtmyer-Meshkov

(RM) interfacial instability. An exact analytical formula is derived for the time-dependent mass

variation in a rippled rarefaction wave, and explicit estimates are given for the time of first phase

reversal and frequency of the oscillations. The limiting transition from the case of RM

perturbation growth at large density difference (low ambient density behind the rear surface) to

the case of feedout (zero density) is studied, and it is shown that the latter limit is approached

only if the ambient density is extremely low, less than 1/1000 of the pre-shock target  density.

PACS numbers: 52.40.Nk, 52.35.Py
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I. INTRODUCTION

One of the sources that seed the initial mass perturbations for the Rayleigh-Taylor

(RT) perturbation growth in laser fusion targets is the roughness of the inner surface of

the target. The process that generates the RT mass perturbation seeds from the initial

inner surface ripples is called feedout, see Refs. 1 to 3 and references therein. It should be

noted that the first discussion and numerical simulation of the inner target surface

roughness seeding the RT instability at its outer surface were presented in Ref. 4.  In this

paper, we neglect all other sources of non-uniformity (laser imprint, front surface

roughness) and assume a constant pressure drive that may correspond either to a low-

energy foot of the laser pulse or to a constant hohlraum temperature. Then for the single-

mode, long-wavelength case1,3 defined in planar geometry by

sLπλ 2>> , (1)

where λ  is the perturbation wavelength, and sL  is the post-shock target thickness, the

feedout could be visualized as shown in Fig. 1.  A planar shock wave S approaches the

rear surface ripples, first breaking out at the valleys, and then at the peaks [Fig. 1(a, b)].

A rippled rarefaction wave is reflected first from the valleys, then from the peaks. In the

reference frame of the shocked mass, its leading edge L propagates at constant velocity

1a , the speed of sound in the unperturbed shocked material. Therefore, the leading edge

of the reflected rarefaction wave is a sine wave of the same phase as the initial rear

surface ripple, and time-independent amplitude [Fig. 1(c)]. The shocked material expands

into vacuum, starting from the valleys, at a constant velocity eu , which for ideal gas

equals )1/(2 11 −γa , so that after the sine-shaped expansion front E is fully formed, its

ripple amplitude is also time-independent. The expansion front propagates faster than the
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incident strong shock wave in the target, if ,236.4521 =+<γ  in which case the phase

of the expansion front is inverted with respect to the initial rear surface ripple [Fig. 1(c)].

Breakout of the rippled rarefaction wave occurs when its valleys (originated from the

valleys at the rear surface of the target) reach the front surface [Fig. 1(c)], starting its

acceleration. In other words, the thinner parts of the target start accelerating earlier, and

experience a higher acceleration under the same driving pressure because of the lower

areal mass. During the RT growth phase that follows, these thinner parts evolve into

bubbles, propagating ahead and dumping more of their mass into the spikes that trail

behind. This physical picture has been recently studied theoretically1 and

experimentally3.

In the present paper we study the case when the long-wavelength condition (1)

does not hold. Then the situation changes in one important way: the lateral mass

redistribution in the rippled rarefaction wave can no longer be neglected. The lateral mass

flow is driven as shown in Fig. 1(b). After the shock breaks out, the expansion starts from

the valleys, decreasing the pressure there, whereas near the peak locations the pressure is

maintained at the constant post-shock value. The resulting lateral pressure gradient starts

driving the mass from the peaks to the valleys, decreasing the pressure at the peaks and

increasing it at the valleys. The mass flow continues when the pressure gradient vanishes,

thus overshooting the equilibrium situation, and building up a reversed pressure gradient.

These sonic oscillations of areal mass in a rippled rarefaction wave, which continue until

the rarefaction wave breaks out at the front surface of the target, were first described in

Ref. 5 (Fig. 14). In the context of the feedout problem, they were observed in the

hohlraum-driven experiments on Nova and reproduced in the simulations.2
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 Feedout as described above is a hydrodynamic process that generates the actual

seed for the RT instability starting from the ripples at the rear surface of the target. It

should be emphasized that the feedout mechanism per se does not involve any interfacial

hydrodynamic instability. There is no perturbation growth neither at the leading edge of

the rippled rarefaction wave nor at the rippled expansion front. The density and pressure

perturbations within the rippled rarefaction wave evolve as decaying sonic waves. Note,

however, that the stable feedout situation could be regarded as a limiting case of a RM

unstable flow, if we assume some low ambient density 2ρ  behind the rear surface of the

target, and then let 2ρ  tend to zero. For any small but finite 2ρ  the rippled rarefaction

wave is unstable,5, 6 and the RM instability growth, asymptotically linear in time, must

take place at the contact interface between the decompressed target material and the

shock-compressed ambient gas. Manifestation of the RM instability has been detected in

the feedout simulations of Ref. 2. Do we have a contradiction here? To answer this

question, it is important to study in detail the limiting transition 02 →ρ  from the RM

unstable to a stable feedout situation.

This paper is structured as follows. In Section II, we describe analytically the

evolution of mass perturbations in a rippled rarefaction wave produced when a planar

shock wave hits a rippled rear surface of the target, compare the results to the RM

unstable situation when the half-space beyond the rear surface of the target is filled with a

low-density gas, and study the limiting transition between the two cases. In Section III,

we present simulation results for both cases and discuss the opportunities for their

experimental verification, and Section IV concludes with a discussion.
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II. THEORY

A. Formation of a rippled rarefaction wave

Consider a planar layer of ideal gas whose adiabatic exponent, initial density, and

thickness are 1γ , 01ρ , and 0L , respectively. The half-space behind the layer 0Lx >

contains a low-density gas with density 2ρ  and adiabatic exponent 2γ . We are interested

in the case of low ambient density 012 ρρ <<  and in the limiting transition to the case of

feedout, 02 =ρ . To exclude expansion of the layer into vacuum from behind prior to the

shock arrival in the latter case, we neglect the initial pressure in both gases compared to

the shock pressure. Then a constant pressure 1p  instantly applied to the front layer

surface produces a strong shock wave whose velocity is

2/1

01

11
0 2

)1(







 +=
ρ

γ p
D . (2)

Shock compression equals )1/()1( 11 −+ γγ . Density, x-velocity and speed of sound in the
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respectively. By the end of the shock transit time interval, 00 / DLts = , the layer is

compressed to its post-shock thickness, )1/(()1( 101 +−= γγ LLs .

At the instant of shock breakout, a centered rarefaction wave starts to propagate

into the uniform shocked gas. Let us pass to the reference frame moving with the shocked

gas and make 0  and  0 == xt  correspond to the time and place of the shock breakout,

respectively. The gas flow in the centered rarefaction wave is self-similar:
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where ),( txa ,  ),( txρ  and ),( txp  are local values of the sound velocity, density, and

pressure, respectively. The strength of the rarefaction wave is characterized by the Mach

number

1

*
1

1 a

a
M = , (6)

where *
1a  is the speed of sound behind the rarefaction wave. The normalized speed of

sound, ),( txA , in a rarefaction wave varies between 1 at its leading edge and 1M  at its

trailing edge. The values of density and pressure at the trailing edge are found by

substituting 1MA =  into (5):
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 The Mach number 1M varies between 1 and 0, the former value corresponding to a weak

rarefaction (sound wave), and the latter — to a strong rarefaction (expansion into vacuum).

In our case of strong shock-interface interaction, its value is found from
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where )1/(2 11 −= γγs , see Refs. 5, 7. Inspection of Eq. (8) reveals  that expansion into

vacuum ( 01 =M ) corresponds to the feedout case .02 =ρ  However, a small value of the

ratio 012 / ρρ  does not necessarily imply that 1M  is also small because the power s could

be large. Taking, for example, 3/521 == γγ , so that 5=s , we find that density ratios
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4321
012 10 and 10 ,10 ,10/ −−−−=ρρ would produce Mach numbers of the rarefaction wave

0.24,  and  0.36  0.53,  ,75.01 =M respectively. Note that the self-similar profiles (4), (5)

do not depend on the rarefaction Mach number .1M

The leading edge of the rarefaction wave propagates in the negative x direction

into the unperturbed resting uniform fluid at local sound velocity, 1a : tatxl 1)( −= . The

rarefaction transit time equals

ss
s

r tMt
a

L
t 0

2/1
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 −==
γ

γ
, (9)

where 0

~
M  is the Mach number characteristic of the shocked fluid flow with respect to the

shock front. For an arbitrary equation of state, it must be 1
~

0 <M , so that the rarefaction

transit time is always less than the shock transit time.

The trailing edge, which also propagates at local sound velocity *
1a with respect to

the fluid particles, separates the rarefaction wave from the uniform downstream flow,

where density and pressure have constant values, *
1ρ  and *

1p , and the fluid velocity

equals

)1(
1

2
1

1

1 M
a

ut −
−

=
γ , (10)

so that .)()( 11 taMutx tt −=  For expansion into vacuum, 01 =M , we have: 0*
1 =ρ ,

0*
1 =p , there is no gas behind the trailing edge, which in this case is called the expansion

front. Its velocity equals )1/(2 11 −= γaue  and coincides with the fluid particle velocity

(10).
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Now introduce a small single-mode ripple at the rear surface of the layer.

Denoting the initial ripple amplitude by 0xδ , we find that immediately after the shock

breakout the ripple amplitudes at the leading and trailing edges of the rarefaction wave

are7
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The leading edge ripple perturbation amplitude is time-independent, *)( ll xtx δδ = . The

trailing edge perturbation amplitude grows linearly with time5, 6 for any nonzero 1M . In

the case of expansion into vacuum (feedout), it is also time-independent: *)( tt xtx δδ = .

B. Areal mass perturbations in a rippled rarefaction wave

A small-amplitude stability analysis of a rippled rarefaction wave has been done

analytically, first in Ref. 8, and later, in a different way, in Ref. 5, and numerically, in

Ref. 6. The results presented below are based on the analysis of Ref. 5, where the details

could be found. Since the density is continuous at the edges of the rippled rarefaction

wave, the contribution of the rippled rarefaction wave to the total areal mass perturbation

(other contributions are discussed in Section IIIC) is given by
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Here,
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tka1=τ (14)

is normalized time ( λπ /2=k  is the perturbation wave vector), δρ is the local density

perturbation, ),( τAΨ  is the relative pressure perturbation in the rarefaction wave

normalized with respect to the constant value *
lxkδ , and A is related to x, t by (4). An

explicit expression for ),( τAΨ  is available for A close to 1:
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where )(0 zJ  is the Bessel function. In a general case,
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where calculation of the functions , ... 2, 1, 0, ),( =Ψ jAj  is described in Ref. 5. In

particular,

A
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where, in our strong-shock approximation,
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In the limit 1→A this is consistent with (15), as it should be. With the help of (16)-(18),

we find the initial value of areal mass perturbation characteristic of the rippled rarefaction

wave:
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Substituting (16) into (13), we obtain a general expression for the mass

perturbation in the rippled rarefaction wave:
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This expression could be simplified for the limiting cases of weak and strong

rarefaction waves. In the former case, 11 1 <<− M , an explicit approximate formula for

)(τδ rm is derived by substituting (15) into (13):
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A weak reflected rarefaction wave could be produced in our case of a strong shock-

interface interaction if the density ratio 012 / ρρ  were a little less than the total

transmission  value )1/()1( 21 ++ γγ  found by substituting 11 =M  into (8).

(Alternatively, the density ratio could be much smaller than this value, but then the

incident shock wave should be weak.)  For instance, assuming 3/521 == γγ  and

95.0/ 012 =ρρ , we find from (8): .9946.01 =M Figure 2 shows the time history of areal

mass perturbation calculated analytically for this case. The solid and dotted lines

correspond to the exact solution (20) and to the approximation (21), respectively, in good

agreement with each other. The oscillations are standing sonic waves excited in the

rarefaction wave by the lateral pressure gradient, which drives the gas from the high to

the low pressure/density areas. The lateral mass flow continues when the pressure

gradient vanishes, thus overshooting the equilibrium situation, but not by much: as seen

in Fig. 2, the peak value of mass perturbation amplitude with inverted phase is only 13%

of its initial value. At late time, the oscillation amplitude decays as 2/3−τ , see Eq. (21).
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For the case of feedout (strong rarefaction wave, 01 =M ), the integrals in Eq.

(20) are evaluated explicitly, without calculating the functions )(AjΨ . This is done by

multiplying Eqs. (63), (64) of Ref. 4, which determine these functions, by )1/(2 1−γA ,

integrating them over A from 0 to 1, and using the boundary conditions (66). Then, after

some algebra, we obtain:
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where )(zΓ  is the Euler gamma function. Note that this expression is exact, not

approximate, like (21), and its right-hand side is finite at .31 =γ  Equation (19) was used

to normalize the areal mass perturbation amplitude with respect to its initial value, which,

of course, is the same as the rear surface mass non-uniformity of the target prior to the

shock breakout: 001)0( xmr δρδ = .

The infinite series (22) converges at all times and represents an entire analytic

function of complex time τ. At early time, this function could be approximated by the

first two terms of the series:
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could be regarded as the first-order estimate of the time interval between the shock

breakout and the first phase reversal of areal mass perturbation.

At ∞→|| τ , the function generated by the series (22) has an essential singularity,

like exponential or Bessel functions. The main exponential term describing its divergence

near this singularity, at ∞±→ iτ , is immediately found by simplifying the expression for

the series  coefficients at large j: )/()sinh( ττδ ΩΩ⋅≅ constmr , where the values of const

and Ω are given below.  On the real axis, the corresponding terms become oscillatory,

describing the most rapidly varying part of the solution:

[ ] (...) 
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where ( )  stands for the terms slowly varying in comparison with )/()sin( ττ ΩΩ ,

)3/()1(
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γγ

γ
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+
−=Ω (26)

is a function of  1γ  that decreases from 1 at 11 →γ  to 1/2 at ∞→1γ . In particular,

( ) 707.02/13/51 ===Ω γ  and ( ) 607.0/131 ===Ω eγ .

Figure 3 demonstrates oscillations of areal mass calculated using (22) for strong

rarefaction waves ( 01 =M , expansion into vacuum), which emerge in the feedout

process. The first term in the right-hand side of Eq. (25) turns out to be a good

approximation to the late-time behavior of rmδ  for .21 1 << γ  In Fig. 3(a), we compare

the exact solution (22) for 3/51 =γ  (solid line) to the asymptotic term (25) (dotted line),

demonstrating a good agreement after 15~τ . Figure 3(b) compares the exact results for

different values of 1γ  between 1 and 2. Overshooting of the initial amplitude is found to
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be large for all cases: by a factor ranging from 2.5 to 3.3 for 1γ  varied between 7/5 and

9/5. One or two of the following peaks are even higher. Figure 3(c) demonstrates a

different behavior found for higher γ s. The amplitude is shifted to negative values and

exhibits a slow (not faster than linear) growth, which becomes more pronounced as γ  is

increased. This could indicate some weak instability of a rippled rarefaction wave that

takes place even at 01 =M , is visible mostly at high γ s, and has not been noticed

before.5, 6  Note that the oscillating contributions to the exact solutions shown in Fig. 3(c)

are well approximated by Eq. (25).

The time of first phase reversal is in good agreement with the estimate (24), the

error in all cases being 4% to 5%. In agreement with (26), frequency of oscillations

slightly decreases with increased .1γ  At late time, the oscillation amplitude decays as

1−τ , as predicted by Eq. (25). The time interval between the first and the second phase

reversals scales as Ω/1 :

),( 11 γθπτ
Ω

=∆ (27)

where )( 1γθ  is a dimensionless correction factor of order unity. This factor tends to unity

in the limit 11 →γ . Its values for 5/71 =γ , 5/3, 9/5, 2, 8/3, and 2.82 are 1.04, 1.19, 1.26,

1.36, 1.77, and 2.03, respectively. As seen in Fig. 3(c), for 82.21 >γ , no second phase

reversal is predicted.

Figure 4 shows how the mass perturbation behavior changes as its Mach number

is gradually increased from 0 to 0.8 ( 3/521 == γγ ). As found from (8), the values of

=1M 0.2, 0.4, 0.6, and 0.8 correspond to the ratios =012 / ρρ 4.1Æ10-5, 1.9Æ10-3, 2.2Æ10-2,

and 0.16, respectively. To facilitate the comparison, the mass perturbation amplitudes are
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also normalized here to the respective values of )0(rmδ  given by (19). We see that the

amplitude of the first inverted peak is very sensitive to the density ratio. E. g., addition of

a very small ambient density =012 / ρρ 1.9Æ10-3 behind the rear surface results in a

significant (27%) reduction of the relative amplitude of the negative peak compared to

the case of feedout (expansion into vacuum).

This theory of feedout applies until the rarefaction wave breaks out at the front

surface. From (9) and (14), we find that this instant corresponds to rττ =  defined as

,
2

1 λ
πτ s

srr

L
kLtka === (28)

cf. Eq. (1). If 1ττ >r , then our feedout experiment or simulation must show a phase

reversal of  mass perturbation in a rippled rarefaction wave. If Ω+> 2/1 πθττ r , then we

should also observe the first inverted peak. For the experiments of Ref. 3 (plastic, =0L 25

µm, 100=λ  µm), assuming a (2.5 to 3)-fold shock compression of plastic, we find:

63.0    to52.0=rτ . The estimate (24) demonstrates that this is definitely insufficient for

phase inversion: in the range of 1γ  from 1 to 2.5 the value of 1τ  varies between 1.25 and

1.64. As found from (23), the above value of rτ  corresponds only to a ~15 to 20%

reduction in the mass variation amplitude by the time of the rarefaction wave breakout in

comparison with the long-wavelength limit 0→rτ . Thus the long-wavelength

assumption (1) is valid in the case of this experiment, and the theory of Ref. 1 applies.

This is not the case for the thick-foil experiment of Ref. 2, where the initial thickness of

an aluminum slab was =0L 86 µm, and the rear side ripple wavelength 50=λ  µm. A 3-

fold shock compression of solid aluminum would correspond to 6.3=rτ , which exceeds
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1τ  for any reasonable value of .1γ  In particular, for 3/51 =γ  we have:

0.42/1 =Ω+πθτ . As demonstrated by Eq. (24) and our Fig. 3, the value of 6.3=rτ  is

large enough for phase inversion and agrees with a ~2.5-fold excess of mass variation

with inverted phase over its initial value, which is shown in Fig. 7 of Ref. 2.

C. RM instability at large density difference

We have demonstrated above that the feedout process does not involve any

interfacial hydrodynamic instability. Nevertheless, the vorticity-driven RM perturbation

growth at the rear surface has been discussed in connection with feedout in Refs. 2, 3. To

find out if there is any contradiction here, let us assume, as done in most computational

studies that use Eulerian or Lagrangian-Eulerian codes, that there is some low-density

ambient gas behind the rear surface of our gas layer, and consider the limiting transition

from the low-density case 1/ 012 <<ρρ  to the feedout case of .02 =ρ  In the former case,

the RM instability would inevitably develop for any ,/ 012 ρρ  no matter how small,

whereas the latter case is essentially stable. Obviously, we must obtain the same results

for evolution of mass perturbations in the stable case 02 =ρ  and in the limiting

transition 0/ 012 →ρρ  from an essentially RM unstable situation. The questions are:

How small should the ratio 012 / ρρ  be in order to make all the contributions to areal

mass variation, other than the rippled rarefaction wave, negligible? How does the RM

instability develop when its contribution to the mass variation is no longer significant?

The shock-interface interaction makes the contact interface move in positive x-

direction at the velocity tu  given by (10) and produces a strong transmitted shock wave
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propagating into the ambient gas at the velocity 2/)1( 22 tuD += γ . Now the contact

interface separates ambient gas, shock-compressed to the density

,
1

1
2

2

2*
2 ρ

γ
γρ

−
+= (29)

and the expanded rear surface of our layer, where the gas density is given by (7). From

(7), (8) and (29) we find the post-interaction density ratio at the contact interface:
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in the limit 0/ 012 →ρρ . The density contrast at the interface therefore remains high in

this limit, although the densities at both sides of the interface tend to zero. At 02 =ρ , the

contact interface coincides with the trailing edge of the rarefaction wave, the expansion

front, see (10).

The total mass variation produced in the RM unstable flow could be presented as

).()()()()( τδτδτδτδτδ scser mmmmm +++= (31)

Here, )(τδ rm is the mass variation in the reflected rarefaction wave given by (20);

)(τδ sem  is the contribution due to sonic and entropy perturbations in the uniform flow

regions on both sides of the contact interface,

∫=
s

t

x

x

se dxxm     ,),()( τδρτδ (32)

[where ),( τδρ x  is the local density perturbation, and tDxs 2 =  is the coordinate of the

transmitted shock front], )(τδ cm  and )(τδ sm  are contributions of the perturbations at the

contact interface and transmitted shock front, respectively:
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( ) ( )  ),()(     ),()( 2
*
2

*
2

*
1 τδρρτδτδρρτδ sscc xmxm −=−= (33)

[where )(  and  )( τδτδ sc xx  are the displacement amplitudes of the contact interface and

transmitted shock front, respectively]. We calculate the time-dependent perturbation

amplitudes ),(  ),,( τδτδρ cxx  and )(τδ sx , and evaluate )(τδm  analytically following the

procedures of Refs. 7, 9, and using Eq. (20). The results shown in Figs. 5(a) to (d) refer to

3/521 == γγ  and 4321
012 10 and 10  ,10  ,10/ −−−−=ρρ . We plot the total mass variation

(31) and the contributions to it due to rippled rarefaction wave, )(τδ rm  (which should

dominate in the feedout limit) and to the rippled contact interface, )(τδ cm  (this one

dominates at late times in the RM-unstable situation).

For 1
012 10/ −=ρρ  [Fig. 5(a)] the linearly growing interfacial contribution )(τδ cm

to the total mass variation is dominant, whereas the lateral mass transfer in the rippled

rarefaction wave adds some oscillatory correction. For 2
012 10/ −=ρρ [Fig. 5(b)],

contribution of the oscillations is much larger, but the linearly growing term )(τδ cm  still

prevails in determining the evolution. At 3
012 10/ −=ρρ  [Fig. 5(c)], the contribution of

the rippled rarefaction wave characteristic of the feedout is dominant, although the

correction due to the interfacial term is not so small — about 10% at the first inverted

peak. Finally, at 4
012 10/ −=ρρ [Fig. 5(d)] the contribution of the rippled rarefaction wave

prevails. We come to the conclusion that an accurate numerical modeling of the feedout

process requires the ambient density (which is not there in the feedout experiments, and

is typically introduced in simulations to make the codes work) to be less than 10-3.

Otherwise the simulation results could contain a numerical artifact — that is, a significant

contribution from the contact interface which is not really there.
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We have seen that in the limit 0/ 012 →ρρ  the contribution of the contact

interface to the total mass variation becomes small. Its smallness, however, comes from

the small density factor *
2

*
1 ρρ −  in Eq. (33). It does not imply that the interface

displacement, )(τδ cx , should also be small. In fact, )(τδ cx  typically exceeds the initial

value, 0xδ , by a large factor, growing with time as it should in the RM unstable situation.

This perturbation development, as we demonstrate below, is somewhat unusual due to the

low value of ./ 012 ρρ  Besides, in the low-density limit we can expect a freeze-out10,

which means zero asymptotic value of the RM interfacial growth rate. For our case of

reflected rarefaction wave, the latter could be estimated with the aid of the so-called

prescriptions due to either Meyer and Blewett (MB)11 or Vandenboomaerde et al.

(VMG)12:
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( )
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where the pre- and post-interaction Atwood numbers are defined as

)/()( 012012 ρρρρ +−=A  and )/(()( *
1

*
2

*
1

*
2

* ρρρρ +−=A , respectively, and *
cxδ  is the

post-interaction interface ripple amplitude, which in our strong-shock case equals to
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 [at 01 =M , the contact interface coincides with the expansion front, so that the

displacement amplitudes (35) and (12) are identical, as they should be.] In the limit

0/ 012 →ρρ  both 1−→A  and 1* −→A , so both prescriptions predict nearly the same
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asymptotic growth rate. The freeze-out, 0=Γ∞ , is predicted for the case when the shock-

interface interaction inverts the phase of the interface ripple without affecting its

amplitude, 0
* xxc δδ −= . The corresponding density ratio is found from (8), (34), (35):
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The RM freeze-out at low ambient densities could therefore be expected for 21 <γ .

Taking 3/521 == γγ , we find: ( ) 4
out-freeze012 105.1/ −⋅=ρρ .

Figure 6(a) demonstrates the time history of a classical RM growth at

3/521 == γγ , 3
012 10/ −=ρρ . Here, displacement of the contact interface cxδ is shown

in units of 0xδ , and the normalized growth rate (or, which is the same, the x-velocity

perturbation amplitude at the interface) cvδ  - in units of  0xkutδ . Recall that typically, the

time-dependent RM growth rate approaches its constant asymptotic value quite fast [in

our present units (14), by 20    to15=τ ], and then stays near it, slightly oscillating, see

Refs. 7, 13, and references therein. Here, the convergence to the asymptotic value

apparently takes much longer — on the time scale of Fig. 6 we do not see it yet. The

oscillatory behavior of the growth rate, with two distinct frequencies that correspond to

lateral sonic waves in two fluids separated by the interface, is characteristic of the low

ambient density case. Still, the growth rate remains negative, and we observe an

approximately linear growth of cxδ  with some superimposed oscillations.

Figure 6(b) represents the same for the case 4
012 105.1/ −⋅=ρρ . Here, the MB

prescription for the asymptotic growth rate predicts a freeze-out, whereas the VMG

prediction is slightly negative. Indeed, the growth rate that is initially negative, changes
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sign at 2.11=τ , and the perturbation amplitude reaches its peak value and begins to

decrease. Note that our analytic calculation has not converged to the asymptotic growth

rate (which must be zero in the case of freeze-out). Nevertheless, comparing Figs. 6(a)

and (b), we see the growth rate shifted from negative to positive values with decreased

ratio 012/ρρ , so that prediction of the freeze-out seems to make sense. The evolution of

perturbations for the exact (that is, determined from compressible linear theory rather

than the MB or VMG prescriptions) value of  ( ) out-freeze012 / ρρ  at  20<τ  should not

differ much from that shown in Fig. 6(b). Note, that a standard-looking RM growth in the

negative direction that could have been revealed by a simulation carried out for the

conditions of Fig. 6(b) up to, say, 10=τ , might be totally misleading — in effect, this is

not a real growth but rather just one phase of decaying oscillations, that should approach,

at very large τ , some constant value of cxδ .

 III. NUMERICAL SIMULATION

Now we compare our analytical results to numerical simulations. The comparison

serves two purposes. First, we do the comparison for a somewhat idealized case of a

constant intensity shock wave driven by external pressure into a uniform gas layer with

ripples at the rear surface. Here, the exact analytical results are used to test the accuracy

of our code in the feedout-related problems. Second, we simulate the feedout produced in

a laser-driven planar plastic target. In this case, the roles are reversed, and the code is

used to test whether the predictions based on an idealized analytical model hold in a

realistic feedout situation.

Our simulations were performed in two dimensions (2D) using the FAST2D

hydrocode developed at the Naval Research Laboratory14 (more details and further
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references are given in Refs. 9, 15). We begin with a test case of classical RM instability

developing at an interface between two ideal gases with 3/521 == γγ and different

densities. The initial conditions correspond to the instant when a shock front hits the

valleys of the rippled interface. The pre-shock density is 3
01 g/cm 1=ρ , the post-shock

pressure is 11=p  Mbar, exceeding the pre-shock pressure by a factor of 1000. Then the

planar shock velocity is 6
0 1015.1 ⋅=D  cm/s, the post-shock density and speed of sound

are 3
1 g/cm 4=ρ and 5

1 1045.6 ⋅=a  cm/s, respectively, as given by Eqs. (1), (2) and

reproduced in the simulation. The wavelength of the interfacial perturbation is 50=λ

µm, and the initial amplitude 5.00 =xδ  µm, satisfying the linearity condition

( 063.00 =xkδ ). The time of shock-interface interaction is ==∆ 000 /2 Dxt δ 0.09 ns.

Figure 7 compares the analytical and numerical time evolution of areal mass

perturbation for a conventional classical RM case of 1
012 10/ −=ρρ  corresponding to Fig.

5(a). We see a reasonably good agreement, particularly in the times when phase reversal,

minimum and maximum of the mass perturbation amplitude occur (note the early-time

shift between the two curves by about 0t∆ ). The difference between the two curves

should be attributed to numerical diffusion rather than to a non-linearity (even near the

peak amplitude, cxkδ  does not exceed 0.25).

Figure 8 corresponds to the case 3
012 10/ −=ρρ [Fig. 5(c)]. This could be regarded

as a simulation of a RM instability at large density difference, or, alternatively, as a

simulation of feedout. From the latter point of view, the above small density ratio is

simply an inescapable numerical approximation to the actual (zero) value. Dotted and

dashed curves in Fig. 8 are theoretical predictions for 02 =ρ  and 3
012 10/ −=ρρ ,
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respectively, indeed quite close to each other. The time of first phase reversal, 1t , and the

time interval between the first and second phase reversals, 1t∆ , could be compared to the

estimates (24) and (26), (27):

)3/5(
2

      ,
2 1

11
1

1 θλτ
π
λ

a
t

a
t

Ω
=∆= . (37)

For 3/51 =γ  we have: 2/)55(1 −=τ , 2/1=Ω , ,19.1=θ so 7.11 =t  ns, 5.61 =∆t

ns, again, in a good agreement with the simulation. The peak perturbation amplitude is

reproduced in the simulation less accurately than in Fig. 7. This appears to be due to

greater influence of numerical diffusion at large density difference.

Now consider a 60 µm thick solid plastic target with ripples at the rear surface

separating it from a gas  or foam  whose initial density 2ρ  is varied from _ to 3Æ10-4 of

the solid plastic density, 07.101 =ρ  g/cm3. We simulate irradiation of this target with a

uniform 0.248 nm KrF laser beam, as in Nike laser at the Naval Research Laboratory16.

The code in this simulation includes inverse bremsstrahlung laser energy absorption

(multiple ray trace), Spitzer-H rm thermal conduction, and tabulated equation of state

(EOS) of plastic. Radiation energy transport, which is also included in the code, has not

been invoked here, since we are mostly interested in evolution of mass perturbations in

the bulk of the target, where the radiation does not reach. We are not attempting to

describe in any detail the subsequent RT growth, which could be significantly affected by

the radiation transport.

Figure 9 shows the results obtained for the beam intensity, which increases

linearly from 1.8Æ1012 W/cm2 to 3Æ1012 W/cm2 in 6 ns, and then stays constant (this

corresponds to an almost constant driving pressure 8.01 ≅p  Mbar), initial rear surface
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ripple amplitude =0xδ 1 µm and wavelength λ = 15 µm.  The planar shock wave

propagates at the speed 6
0 1014.1 ⋅=D  cm/s, compresses solid plastic by a factor of 2.2,

and breaks out at the valleys of the rippled rear surface at 5.1 ns. The shock-ripple

interaction takes ==∆ 000 /2 Dxt δ 0.18 ns, the evolution described in Section IIB thus

starting about 5.3 ns. The sound velocity in shock-compressed plasma is 6
1 1014.1 ⋅=a ,

so that the rarefaction transit time is 2.3 ns, and the acceleration phase starts at about 7.4

ns.

To check our analytical estimates, we have to select some effective value of 1γ

approximating the realistic EOS of plastic. One can do it, for instance, estimating 1γ  from

the compression ratio: according to Eq. (3), a 2.2-fold shock compression corresponds to

3/81 =γ . Then, in the feedout limit 02 →ρ , according to Eq. (37) (where 3/81 =γ

corresponds to 7.11 =τ , 62.0=Ω , 77.1=θ ) we obtain: 36.01 =t  ns, 9.11 =∆t  ns. In

other words, the first phase reversal is predicted at 5.6 ns, and the second — at 7.5 ns,

which is in good agreement with the results shown in Fig. 9. We see that for

1
012 10/ −<ρρ  the overshooting of the initial areal mass perturbation amplitude in first

phase-reversed peak is about 3-fold, again in agreement with the theory of Section IIB.

At late time, ∞→t  the pressure 1p  would drive the shocked mass into the half-

space filled by the gas of density 2ρ  at some constant speed 2v , which is found from (2)-

(3), where 01ρ  and 0v  should be replaced by 2ρ  and 2v , respectively. The transient

regime of accelerated motion lasts about 
st2/1

201 )/( ρρ . Therefore, evolution of mass

variation after the rarefaction breakout is determined by a complicated interplay of the
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RM instability at the contact interface, and RT and RM-like17 instabilities at the ablation

front. This rather complex behavior is observed in Figure 9.

In direct-drive laser fusion, a constant low-energy foot of the laser pulse, which

provides the desired value of the target s adiabat during the first shock compression, is

typically followed by a main drive pulse of much higher intensity. Most of the target

acceleration and RT perturbation growth occur during the main pulse. However, the seeds

for the RT growth, which in our case come from the rear-surface ripple, are largely

generated earlier. The oscillatory early-time evolution of perturbations makes the

subsequent RT growth phase-sensitive: a RT bubble can develop where the target was

initially thinner or thicker, depending on the perturbation wavelength, target thickness

and the laser beam parameters.

This is illustrated by Fig. 10. Figure 10(a) shows the laser pulse shape, with rapid

intensity increase from the foot to the main drive level at about 5.8 ns. The background

gas density is taken 01
310 ρ×− . In Fig. 10(b), the evolution of mass perturbation

amplitudes is presented for several ripple wavelengths. As expected [see (36)], the time

interval between the shock breakout and the first phase reversal is proportional to the

perturbation wavelength λ . Shortly after this, the RT instability starts to develop, which

means that the thickness of compressed target sL  becomes a significant scale,

comparable to the perturbation wavelength (in our example, 25≈sL  µm). Indeed, we

observe a quite complicated behavior rather than self-similar. In particular, the

exponential RT growth occurs with initial perturbation phase (albeit after two phase

reversals) for 40=λ  µm, and with inverted phase for 30=λ  µm. In other words, for
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40=λ  µm the RT bubble develops where the target was initially thinner, and for 30=λ

µm - where it was initially thicker.

Figure 11 illustrates the latter case with the density maps shown at 0=t , 6.9, 8.4,

and 9.6 ns. Note the first phase reversal at the rear surface on Fig. 11(b), similar to that

shown in Fig. 1(c). Then the laser intensity increase to the main drive level produces the

second shock wave, and by the time the second rarefaction wave breaks out at the front

surface, the rear surface changes its phase again [Fig. 11(c)]. Although the total mass

perturbation at that time has the same phase as the original rear-surface perturbation [Fig.

11(a)], the RT instability starts to develop at the front surface, where the mass

perturbation has the opposite sign, and maintains this phase throughout its exponential

growth. The 3 total phase changes of mass perturbation observed in Fig. 10 occur because

the rear interface changes phase again and its contribution to the total mass perturbation

remains dominant before the RT eigenmode (with the opposite sign) takes over. The net

result is that the bubbles develop where the target is initially thicker, in contrast with

what would be expected in the long-wavelength limit,1, 3  and is actually seen in our case

of 85=λ  µm, when there is not enough time even for a single phase reversal (or, to be

more precise, when the phase reversal occurring near the rear surface is more than

compensated by the RT growth starting near the front surface at the initial perturbation

phase.)  Comparing the 30=λ  µm case to the others, we note that the two phase

reversals seen in Fig. 10 for 40=λ  µm occur because the second shock reaches the rear

surface before the mass perturbation there changes sign.

The complicated behavior of mass perturbations due to feedout, as described

above, has yet to be studied in the experiments. So far, the indirect-drive experiment2
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demonstrated a complete phase reversal, whereas in the direct-drive experiment3 the

onset of an areal-mass oscillation at the fundamental harmonic is clearly seen on their

Fig. 4. To advance from there, one needs to do a careful design of an experiment under a

number of constraints. 1) In order to observe more of the oscillations, it is desirable to

have a longer driving laser pulse than those of Refs. 2, 3 (about 2.2 ns). 2) The laser drive

should be sufficiently uniform, to prevent the target from being torn apart by the short-

wavelength laser-imprinted perturbations while we try to follow the perturbation

development at the fundamental harmonic of the rear surface ripple. 3) To increase the

frequency of oscillations, it is preferable to deal with short ripple wavelength in the range

15 to 30 µm (although by varying the pulse duration and intensity and target thickness,

one could probably use longer wavelengths), which is quite a challenge for the imaging

diagnostics. In our opinion, the Nike laser facility16 at the Naval Research Laboratory

(NRL), with its long pulses (4 ns standard could be extended to 8 ns) and low beam non-

uniformity (0.25%) is clearly the best laser driver for such an experiment. The

monochromatic x-ray imaging diagnostic technique developed and fielded on Nike18

provides sufficient spatial resolution to observe peak-to-valley mass variation above 2

µm of solid plastic at the wavelengths greater than 15 µm. Design of a Nike feedout

experiment is now in progress.

IV. CONCLUSIONS

We have studied the feedout mechanism that generates the seed for the RT

instability starting from the ripples at the rear surface of the target through hydrodynamic

evolution of mass perturbations in a rippled reflected rarefaction wave. We have shown
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that the feedout represents a quite special (stable) limit of a RM-unstable flow, which is

only approached in numerical simulations if the ambient fluid density behind the rear

surface is extremely low. An accurate simulation of feedout requires much care to

suppress the contribution of a numerically generated RM instability due to the ambient

gas, which is not really there. The special case of feedout, on the other hand, turns out to

be analytically tractable, so that explicit analytic formulas are now available for the time

history of the areal mass perturbation amplitude, its early- and late-time asymptotics,

oscillation frequency and time intervals characteristic of phase reversals. These formulas

are shown to agree with our simulation results. Since the wavelengths characteristic of

the inner surface roughness in laser pellets are  ~100 µm or more, and a typical thickness

of the shock-compressed target is 50 µm or less, the dimensionless time interval

rτ relevant for feedout in laser fusion conditions does not exceed ~3 to 5. Therefore, most

of the relevant feedout processes occur before or within the first inverted peak of areal

mass perturbation. Amplitude, timing and duration of this peak are given by our theory,

which agrees with our simulations.

The available data on feedout perturbation growth obtained in indirect-2 and

direct-drive3 experiments agrees with the physical picture outlined in our paper. Much

more remains to be done in experiment, however, in order to study the feedout process in

full detail and ensure validation of the codes in the feedout regime. Our preliminary

estimates indicate that such experiments are not beyond the reach of the existing laser

facilities and diagnostic techniques.
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Figure captions

Fig. 1. Formation of a rippled rarefaction wave in a feedout situation. (a) A planar shock

wave S driven by a constant force F approaches the valleys of the rear surface ripples.

Mass and shock velocities 0v and 0D  are shown in laboratory reference frame. (b) A

rippled rarefaction wave starts to form near the valleys. In the reference frame of shocked

gas, its leading edge L propagates to the left at local speed of sound, 1a . Its trailing edge,

the expansion front E, propagates to the right at constant velocity eu . (c) A fully formed

rippled rarefaction wave approaches the front surface. Before its breakout, the ripple

amplitudes at its leading and trailing edges, L and E, are constant in time.

Fig. 2. Time history of mass variation in a weak rarefaction wave at 9946.01 =M : exact

[Eq. (19), solid line] and explicit approximate [Eq.(20), dotted line] results of linear

theory normalized to *
1 lxδρ .

Fig. 3. Time history of mass variation in a strong rarefaction wave at 01 =M . (a) Exact

solution (22) and asymptotic solution (25) (solid and dotted lines, respectively) for

.3/51 =γ  (b) Exact solutions (22) for 1γ  varied between 7/5 and 9/5. (c) Same for 1γ

varied between 5/2 and 5: no second phase reversal for 82.21 >γ .

Fig. 4. Time history of mass variation in a rarefaction waves at 1M  varied from 0 (thick

solid line) to 0.8 (dashed line) with increment 0.2.

Fig. 5. Time history of mass perturbation growth in a RM unstable configuration: total

mass variation mδ  and contributions to it from perturbations at the contact interface,

cmδ , and in the reflected rarefaction wave, rmδ  (solid, dashed, and dotted lines,

respectively): (a) 1
012 10/ −=ρρ , Mach number of the reflected rarefaction wave
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75.01 =M ; (b) 2
012 10/ −=ρρ , 53.01 =M ; (c) 3

012 10/ −=ρρ , 36.01 =M ; and (d)

4
012 10/ −=ρρ , 24.01 =M . Mass perturbation amplitude is normalized to its pre-

interaction value, 0201 )( xδρρ − .

Fig. 6. Displacement of the contact interface (in units of 0xδ , solid lines) and its time

derivative (the growth rate, shown in units of 0xkutδ , dashed lines) for (a) 3
012 10/ −=ρρ

and (b) 4
012 105.1/ −⋅=ρρ . Dashed straight lines show the asymptotic growth rates

predicted by the MB and VMG prescriptions.

Fig. 7. Mass perturbation growth due to the RM instability at density ratio 1.0/ 012 =ρρ .

Solid line — numerical simulation, dotted line — analytical theory [same as solid line in

Fig. 5(a)] .

Fig. 8. Mass perturbation growth due to the RM instability at density ratio 3
012 10/ −=ρρ .

Solid line — numerical simulation, dotted line — analytical theory [same as solid line in

Fig. 5(c)], dashed line — analytical theory for the case of feedout [same as solid line in

Fig. 3(a)].

Fig. 9. Evolution of rms mass variation in a laser-driven 60-µm solid plastic target with

initial ripple amplitude 1 µm, and varied ambient density behind its rippled rear surface

[here backρ  stands for )g/cm 07.1/( 3
2ρ ].

Fig. 10. Laser pulse shape with intensity increased from a constant low-intensity foot to

the main drive (a) and the corresponding evolution of rms mass variation in a 60-µm

solid plastic target with initial ripple amplitude 1 µm , 3
012 10/ −=ρρ , and varied ripple

wavelength (b).
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Fig. 11. Density contours for the case 30=λ  µm of Fig. 10, taken at  0=t  (a), 6.9 ns

(b), 8.4 ns (c), and 9.6 ns (d).
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