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THE EFFECTS OF OPTICAL SMOOTHING TECHNIQUES ON
FILAMENTATION IN LASER PLASMAS

I. Introduction

The production of uniform laser illumination has been a fundamental concern in the laser-fusion
community for many years. The quality of the laser-plasma coupling and symmetry of the pellet
implosion are dependent on the illumination uniformity. Illumination uniformity analysis can be
divided naturally into large and small scale categories. Large scale illumination uniformity is
primarily determined by the gross intensity profile of the incident laser beams, the inter-beam energy
balance, and the geometry of the targeting on the pellet. This aspect of the uniformity problem has
been previously addressed, and the results indicate that the gross uniformity can probably be
controlled to within tolerable limitsl’ . The detailed structure of the individual laser beam is
responsible for small scale nonuniformities, and is more difficult to suppress or control. The laser-
plasma filamentation instability is seeded by these small scale nonuniformities and tends to increase
the nonuniformity, exacerbating the problem. .

. The filamentation instability is a nonlinear optical effect that has been studied for many years.”
-Filamentation is caused by perturbations or nonuniformities in light that produce local changes in the
dielectric constant, or index of refraction, of a medium. If the change in the dielectric constant is
positive in regions of higher intensity, a focusing lens is produced there. This increases the
perturbation and starts the instability. The instability will saturate when the focusing tendency of
the intensity hot spot is balanced by diffraction, but at this point the ﬁlament intensity may be
orders of magnitude higher than the initial perturbation.

In laser plasmas, there are a variety of mechanisms that give rise to an intemsity-dependent
dielectric constant and produce filamentation. Among these are ponderomotive force effects™”, plasma
heating or thermal eﬂ'ectse, and relativistic effects.’ . The ponderomotive and thermal effects change
the dielectric constant by expelling the plasma densxty from the high intensity region; these
mechanisms are active in laser-fusion plasmas. The relativistic mechanism affects the dielectric
constant via the increase in electron mass from the relativistic quiver velocity in the electromagnetic
wave; this is generally unimportant at the intensity ranges used in laser fusion applications.

Intensity hot spots caused by filamentation of the laser can seriously degrade the laser-plasma
coupling, and may affect the ablation pressure uniformity. The high intensity filaments can induce
other harmful laser-plasma instabilities, such as stimulated Raman scattering or two plasmon decay.
Since filamentation has one of the lowest instability thresholds, and produces conditions favorable for
other instabilities, it effectively lowers the thresholds and increases the growth rates of these other
instabilities. These instabilities degrade the coupling quality by producing superthermal electrons
which can preheat the fuel and spoil the gain. The enhancement of secondary instabilities also
obscures our understanding of the underlying physics of the laser-plasma interaction: since
filamentation is itself hard to measure directly, it is even more difficult to diagnose the effect of
filamentation on other phenomena. There is also the concern that the laser filaments may produce
ablation pressure nonuniformities which seed or drive the Rayleigh-Taylor instability in the imploding
pellet.

To avoid the filamentation instability, as well as to provide some control over the gross laser
beam profile, new optical smoot.hm& techniques have been developed. One of these is the im]l-t(l)ced
spatial incoherence (ISI) method”; another is the random phase screen (RPS) method.” ™’
Experimental results using these techmques are incomplete and are still under investigation. The ISI
results to date are favorable“; diagnostics of most laser-plasma instabilities (e.g., 2W o SW / Raman
scatter, SBS scatter) show mgmﬁca.nt reductions when compared to results with an unsmoothed beam.

The RPS method has also shown some reduction in .,uo/z emission when used in a spherical
illumination geometry.

Manuscript appoved October 7, 1987.



The implementation of each of these optical smoothing methods involves trade-offs. The RPS
technique requires fast focusing optics to work effectively, but can be implemented with only minor
modifications to existing lasers. ISI promises to be a more robust smoothing technique, but requires
a broadband laser (Aw/w ~ 0.1%). Glass lasers can be converted to run broadband at 1.08gm and
0.53m laser wavelengths; for short wavelengths, the KrF laser is an exce]lent candidate for sLi4

Evaluation of these optical smoothing techniques requires information on how the filamentation
instability is modified by the incident laser beam structure. Experimental data on filamentation has
been sparse or nonexistent because of difficulties in controlling and diagnosing both the laser intensity
structure and the plasma conditions, and theoretical techniques are insufficient to handle the
complexity and norlinearity inherent in the problem. Computational techniques are also severely
tested, especially when modelling ISI or RPS. Both ISI and RPS require resolution of a large range
of scalelengths (typically from less than one to a few hundred laser wavelengths). This requires large
computational meshes, and the resolution constraints invalidate the use of well developed ra{-stra.cing
computational methods, which ignore diffractive effects that are important at the small scales.

We will analyse the limitations of optical control techniques and compare these smoothing
methods with traditional (unsmoothed) high-power lasers. The paper is organised as follows: in
section II, we describe the construction of a two dimensional, time dependent, laser-plasma
propagation code that includes both ponderomotive and thermal filamentation mechanisms. A steady
state version of this code is also developed to treat problems without inherent time dependence.
Next, a general analytic perturbation formalism of filamentation is presented in section III, and is
extended to account for filamentation of incoherent ISI laser light. Finally, section IV presents the
results of the numerical codes for a variety of laser beam profiles, and compares these results to the
analytic predictions. '

We will show that there is a qualitative difference between thermal and ponderomotive
filamentation: filaments created by the thermal mechanism tend to bunch together and cause greater
nonuniformity than ponderomotive filaments, which interact less. This clustering can result in a
different saturation mechanism for thermal filamentation. We also find that the RPS optical
smoothing method is dependent upon the use of fast optics (F/# £5), and that the ISI method is
capable of suppressing filamentation effects and providing smooth time-averaged intensity distributions
using moderate laser bandwidth. In spite of the smoothing effects, ISI can also produce noticeably
enhanced intensities in the plasma. In laboratory conditions, however, ISI is shown to suppress
filamentation effects more completely than RPS or generic laser beams. At longer laser wavelengths
filamentation occurs readily, and optical smoothing techniques suppress, but do not eliminate, the
filamentation tendency. The best results for all optical methods are found with short-wavelength
(A,~0.254im) laser-irradiated plasmas, where high absorption helps to reduce filamentation. In these
plasmas, the ISI technique can completely eliminate filamentation.



[I. Governing Equations and Numerical Description.

In this section, we will develop the basis of the numerical scheme and discuss the relevant
physics involved. We first derive the equations describing the laser light propagating in a plasma in
which the dielectric constant has been perturbed; then we derive the equations describing the
perturbation of the dielectric constant caused by changes in the plasma density responding to the
laser light. We will treat two mechanisms responsible for plasma density changes. The first is the
ponderomotive force, which directly expels the plasma from regions of high laser intensity. The
second is thermal conduction dominated plasma heating, which creates temperature (and thus pressure)
gradients and also forces the plasma out of high intensity regions.

The numerical algorithms that handle the governing equations will also be outlined in this
section. Two versions of this code have been created. The first is time-dependent and is used
primarily for the ISI calculations. The other model solves the equations in a quasi-steady state

approximation, and is used to calculate filamentation effects when the incident light is stationary in
time.

The analysis in this paper uses a two-dimensional (2D) cartesian description of the interaction.
The spatial growth rates and amplification wavenumber-spectrum are very similar in two and three
dimensions, as we will show in section II. The 2D numerical analysis also reduces computational
memory and time constraints to manageable levels, and allows a large region of parameter space to
be covered by using many simulations. Cartesian rather than cylindrical geometry is needed to study
filamentation in 2D, since cylindrical geometry artificially favors on-axis focusing and cannot equitably
treat the random-phasing required in optical smoothing simulations™ ’~". The main difference
between the 2D calculations and three-dimensional (3D) calculations occurs in the peak intensity
values: 3D filaments can typically reach much higher peak intensities. However, rapidly varying
intensity profiles may restrain large peak intensities in 3D: preliminary results of 3D simulations of
ISI show that the light energy distribution is comparable to 2D simulations.
A. Light Propagation

The laser propagation and filamentation will be described by the patabohc wave approximation
to the Maxwell wave equation. Starting w1th the Maxwell equations, we assume that the divergence
of the electric field is small &°°VE/€<<k ), and set VeE=0. The electric field is separated into
fast and slow space-time scales with the substitution: E(xzt) = 1/2[‘1’(x,z t)exp{-ifk dz + iw t}-+e.c.|
¥(x,s,t) (is the wave envelope of the electric field, k_(z) is the (real) laser wavenumber
(X ofz)—u € (z) /c”Y, €, i3 the real part of the unperturbed plasma diclectric constant (€_=¢€ orTi€op
and € (2 ) =1-n {(z}/n_, where n (z) is the unperturbed plasma electron demsity, and n_ is the’ plasma
critical density). (The subscrxpt 0’ appended to a variable means that it is evaluated at the
background or unperturbed state.) If the wave envelope ¥(x,z,t) varies slowly with respect to the
laser wavelength and frequency, the Maxwell wave equation reduces to the parabolic wave equation:

2
W

2k, & - VB v = [ (eax,t)e (=) - i ) v (2.1)
c

2(zxt) U2-1w2(zxt)V ( z,X, t)/u is the fully perturbed plasma dielectric constant;
W_=4Te“n /m_ is the electron plgsma. frequency, and V. ; is the electron-ion collision frequency. (The
time derivative { a\l‘éatg can be formally eliminated by transforming to the frame moving with the
pulse group velocity , with the variable substitution t’=t-s/v_. In practice, one can simply ignore
the time derivative term if the transit time of the propagation region is much smaller than any
characteristic time for changes in the dielectric constant.) We normalize all spatial coordinates by

the laser vacuum wavelength, ko’ and define the transformation (using the spatially normalized
coordinates):

where €{z,x,t)= 1-W

¥ =9 exp{%fgz“ £_1(2xeoi(z") - al.;/az")} (2.2)

- 2
where k=cko(z)/ld , and € i—-w"o(z) exo( )/hl is the imaginary part of the unperturbed plasma
dielectric constant. This t.ra.naforma.tlon accounts for ambient absorption and sweiling due to demsity



inhomogeneity. Redefining the variable in the 3 direction as 7]=Izdz’/k(z’), we arrive at the
parabolic wave equation in canomnical form:

(mg—” - V) ¥ = 41%6e(n,x,t) (2.3)

where J€=€(7),x,t)-€(z) is the change in the plasma dielectric constant induced by the laser EM field.
The effect of the plasma on the propagating field is concentrated in this term. For the cases of
interest here, this induced change is entirely due to changes in the plasma density (fe=
(n(z)-n(f],x,t))/nc), and is found by solving the equations governing the plasma response to the laser.

The parabolic wave equation (2.3) is solved numerically on a mesh in x-z(7]) space, with time
treated as an independent {ara.meter. The numerical algorithm consists of a split-step fast-Fourier-
transform (FFT) technique 2, To accommodate the Fourier transform technique, the computational
mesh is periodic and equally spaced in the transverse (x) direction.

The periodicity of the mesh affects the manner in which the initial laser field is numerically
constructed. The focusing optics separate the incident laser beam into many individual beamlets,
which are focused onto a target where they overlap one another. In the code, these overlapped
beamlets are approximated as plane waves incident on the plasma at different angles; this is a good
approximation in the center of the focal spot. For a high-power laser without optical smoothing,
these beamlets correspond to light from different sections of the beam, and they will be be slightly
incoherent with respect to one another (depending upon the degree of aberration in the beam). In
the case of the ISI and RPS smoothing techniques, these beamlets are incoherent with respect to one
another, and correspond to the light coming from different echelon steps or phase shift regions of the
random phase screen. .

The incident wave field is constructed on the Fourier transformed plasma mesh which has the
spacing Akx=21 /X ax’ where Xm is the length of the mesh in the x direction. Each beamlet has
- a unique wavenumber k_: the wavenumber of the i-th plane-wave beamlet incident at angle Gi has a
k component_kxi=kosm9.. The angles §, are given by the relation §.%tan 1(d[i—(1+Nb)/2]/f),
where d is the width of the echelon step, phase shift area, or spatial coherence distance; [ is the
focal length of the lens, and i varies from 1 to N, (N, is the number of beamlets used). For
moderate-to-large F/# optics, § is small and tanf.%sin@.2§.. The modes corresponding to the
individual beamlets are then assigned to the nearest point on the k-space transform mesh; the mesh
spacing Akx=27r/X of the Fourier transformed mesh corresponds to an spatial angular resolution
A9=X°/X . The real and imaginary parts of the electric field of each beamlet at wavenumber k_.
are then md to the value at the assigned mesh point. In general, the electric field at each k
mesh point at 3=0 is independently assigned a random amplitude or phase {or both) depending upon
the type of beam being simulated. For ISI simulations, the phases of each beamlet are chosen to be
uniformly random and their amplitudes are selected with a Gaussian probability distribution. For
RPS and other lasers, we typically use constant amplitude but uniformly random-phased modes.
(More detail on the construction of laser profiles is given in section IV). The laser electric field
E(x,z=0,t°) is then found by inverse Fourier transforming this distribution. For the ISI simulation,
this process is repeated again after every interval t to produce a new randomly generated E field.

B. Plasma Response .

The nonlinear change in the dielectric constant, §€(x,z,t,§ 9), is found by solving for the
plasma density using a one-fluid plasma model. The calculation is greatly simplified by ignoring
fluid coupling to itself along the direction of propagation of the laser (z axis). This approximation is
valid when the plasma gradients along the z-axis are much smaller than gradients perpendicular to
the z-axis, and is consistent with the slowly-varying-envelope approximation used previously for the
laser electric field. The approximation also ignores fluid flow along the laser axis (which is typically
supersonic in the underdense regions of laser-fusion plumuzz). The effect of flow on filamentation
has been considered elsewhere’* and can be ignored if the flow gradients are small and the fluid flow
velocity is not too supersonic. The presence of counterpropagating axial supersonic flow reduces the
" amount of filamentation growth, so the results presented here may overestimate filamentation.

The continuity and momentum equations for the quasi-neutral ome-fluid plasma in the presence

of the laser ponderomotive force are linearized, and combined to give a driven ion-acoustic wave
equation for the electron density




+ av2uy* (2.4)

C 1

2
3%, 3 2 2 422
(at * g - G VLJ In(ay) = V|04

2
1

where a=Zez/4memihl§ and Cf=(ZTe+Ti)/mi, and a phenomenological damping term V has been
included. This equation describes the plasma responding as an ion-acoustic wave driven by
temperature (pressure} gradients (first term on the right) and the ponderomotive force (second term).
The variable In(n_) preserves the correct nonlinear isothermal steady state behavior, and ensures
positivity of the &ensity in the transient regimes. The term ~V lln(ne)v C” is ignored, as it is
second order in the perturbation. For all of the cases considered in this paper, the condition
bn o/ Neo<<1 is valid; typical values of On_/n__ in the time-dependent calculations are less than ~5%.
(For 5 laser light, hot-spots shift randomly on the order of the coherence time {~psec), which is
faster than than the density can respond. Intense ISI filaments are not precluded, though, since even
shallow density channels can produce substantial refraction over long propagation distances. For long
pulse non-ISI lasers, quasi-steady state density equilibration can occur, and a different, nonlinear
steady-state formulation for the electron density is used. This algorithm will be described later.)

The ion temperature is assumed to be constant in time, since the ion-electron energy
equilibration time is typically on the order of nanoseconds in these plasmas, and this is much longer
than time-scales of interest. The background ion and electron -temperatures are assumed to be equal.
(The model and results are insensitive to the ratio of background electron-to-ion temperatures, and in
any case the results can be easily renormalized to account for different ratios.) The perturbed
electron temperature is then found by solving the relevant emergy balance equation:

3 a_ _ R
2% 3t Te = = 1)°0 + 8(n,,T) (2.5)

Q is the electron thermal heat flux -ﬁel T,, S is the Joule heating source given by ch\P*‘P, )Ee('l‘ )
is the electron thermal conductivity (including any flux-limiting effects), and £ (n ,T,) is the inverse
bremsstrahlung absorption coefficient. Compression effects and electron-ion energy coupling are ignored
since they are much smaller than the terms included in (2.5) for the cases studied here.

The equations (2.4} and (2.5) can be put into a form that depend on dimensionless quantities
describing the magnitudes of relevant physical phenomena. We define:

ponderomotive pressure

7 =
P plasma thermal pressure
Pty ., v s A2 [pa] I_[10M* Loy
T = 2 L, © 1. 2° - 1
P 4n WST, (1+7) 4(1+9) g, T (1+5) T__[keV]

(2.6a)

thermal conduction transit time across laser wavelength dimensions

1 =
T ion-acoustic transit time across laser wavelength dimensions
3 Csoneoc ~ -5 (neo/nc) 1nd Z_ (Z+1 1/2
Tri =2 % w =~ 1.35¢10°7 = 52 X (2.6b)
eo o Teo (kev] A, [ pm]



inverse bremmstrahlung heating rate

1 =
T2 thermal conduction cooling rate across laser wavelength dimensions
e, 40 I 0%y 2 2 a4 o2
_ boo. -9 "o cm™? Z71nA eo
Trg = 3 . = 8.95¢10 3 OIS (2.6¢)
w'e T T2 [keV]{e c
o eo eo e o

where A and Z are the plasma ion mass and charge, InA is the Coloumb logarithm, and
P(Z)=(Z+.24)/(1+.242). The subscript ’o’ again refers to evaluation of the variable at an
unperturbed or initial value. )

4o is the scaling constant of the steady-state temperature perturbstion in the plasma, which
is the active force in the thermal filamentation mechanism. The sensitive dependence upon plas?a
temperature is due to the temperature ?ependencies of the electron-ion collision frequency ("'T;3 2)
and electron thermal conductivity ("‘Te ). As the temperature rises, both the decreasing collision
frequency and increasing thermal conduction act together to smooth temperature gradients and quench
the mechanism. For this reason thermal filamentation is more important in cooler dense plasmas,
such as those created by short wavelength (A _<0.5pm) irradiation. The ponderomotive_force, on the
other hand, is more important -in long wavelength laser irradiation of plasmas (7p"10)\§/To) because
of its explicit dependency on laser wavelength.

Another important difference between these two types of filamentation is the mechanism by
which they couple the laser light to the plasma. The ponderomotive force is almost instantaneously
felt by the plasma (on times of order u; ), and is stronger for hot spots with shorter scalelengths.
In contrast, the thermal forces in the plasma require the establishment of temperature gradients. The
temperature distribution is created on a characteristic time scale that is longer for larger scalelengths
(T~n L%/K ), 8o the force is transmitted more slowly for large scale filaments. At shorter
scalelengths, the force is suppressed by the diffusive thermal conduction smoothing. Thus, thermal
forces are greatest at large scalelengths and long times, as opposed to ponderomotive forces which are
greatest at short scalelengths at all times. These characteristics are the basis of the qualitative
differences in the two filamentation mechanisms.

Using the quantities (2.6), the plasma response equations (2.4} and (2.5} can be re-written as:

2

3 A3 2 -y 1 2= 2-
(Be2 Eog V) 1a@@,) = Ty L @.7)
21r7Tlx'ie _gt T = 11°Ee§iT + 4'27’!21 (2.8)

Again, the spatial coordinate x is normalized to the laser wavelength A and the time is normalized
to A /Cso’ the ion-acoustic transit time across a laser wavelength. The overbar indicates that the
la.ria.%le is normalized with respect to its initial or unperturbed value, e.g., ie = n,(x,2,t) /n,,(z) and
I = I(x,3,)/I_(z=0).

In the computer code, the plasma variables nc(x,z,t), ane(x,z,t)at, and T (x,z,t) are defined on
the same {x,z} mesh as the laser electric field. The numerical algorithm for the hydrodynamics of
eqn. (2.7) uses a combination of FFTs and an analytic solution. Assuming relatively small variations
in the sound speed in x, the driven ion-acoustic wave equation can be Fourler transformed to yield:

2
d d 2 _ 2( * 1 = ]
[_at2 + qu—-at + kx} 1n(ne) = kx 7p§?} + ———(1+1/Z)T (2.9
where q is the ratio of the imaginary to real frequemcy of the ion acoustic wave, v/k_C . (In the

analysis presented here, q is generally taken to be 1/2, in accordance with the significant Landau



damping for T —T) For the purposes of the calculation, the driving terms are assumed to be
approximately Gonstant over the time step used in the code (on the order of a picosecond). The
solution to (2.9) for a source that is comstant from t to to+1' is then found amalytically:

aaligigor) = o | Getatate)) + 25 [1aGate)) + oji2sT

+ [1n(n[‘bo])+G] cosm‘] -G (2.10)

where K= (1-q /4)1/21: and G= {7_¥ F(k’ t +T/2)+T(k 4+7/2)/(1+1/2)}. This result is inverse
Fourier transformed numenca.lly to yield the plasma densxty at the advanced time t +7.

The plasma energy balance eqn. (2.8) is solved with a three-point predictor-corrector method
and is subject to the same periodic boundary conditions imposed by the Fourier treatment of the
laser light and plasma density calculations. This can cause problems, since the net energy deposited
by inverse bremmstrahlung at a given axial position cannot be lost either by heat flow out of the
system or conversion to axial plasma kinetic energy. Under these circumstances, the plasma at any
given axial position will continually gain energy (temperature) as the interaction progresses, in
contrast to the real system which will reach a quasi-steady equilibrium with laser energy converted to
plasma blowoff and target acceleration. To avoid this unphysical behavior, the spatially averaged
energy gain (41’2 fdx"7T2(x )T (x t)/X ay) 13 subtracted from the source term of eqn. (2.8} to keep
the mean temperature constant. Thxs 18 equwalent to assuming that the energy losses (to axial
conduction or flow) are independent of the coordinate x

A harmonic-mean flux-limited formalism is used for the heat flux:

[ lVlTel

- & _ 2+
8= [1+ £nT v
e T

-1

) ey T, (2.11)
K, is the Spitzer electron thermal conduction coefficient of the plasma and f is a phenomenological
flux-limiter. Anomalous flux limiting in laser plasmas has been implied by indirect experimental
measurements of axial heat flow in the region between the critical density and the ablation surface.
However, the magnitude of flux limiting in transverse heat transport in the underdense region is
speculative at best. The semi-classical value f=0.1 is used here simply to enmsure that the heat flux
stays within physically allowed bounds 8  In most of the calculations presented here (and in all of
the ISI calculations) the heat flux is much smaller than this limit, so the results are insensitive to
the flux-limiter.

For time independent problems (i.e., laser-plasma interactions with non-ISI lasers and pulse
lengths long compared to hydro times), the calculation of the plasma demsity is simpljfied. The

solution of the steady-state momentum balance equation for time-independent sources § ¥(x,z) and
Te(x,t) is

’ X - —— ,
2y (6,2) = o exp(o [ dx® O 2(x", ) VB FG2) , (2-12)

Cs (x,2)

where C’ is Ezconsta.nt of mtegru._)on given by the definition of average demnsity: C’=
mu/fdx” J(x*)exp(-7 fdx’C v <7 #)- The temperature T,(x,z) is found by iterative solution
o? eqn. (2.8) thh arbitrary txme stcps, performed until the solution converges. These separate

solutions for T (x z) and n (x z) are then iterated alternately to obtain a convergent steady-state
solution for both.



OI. Analytic Formulation of Filamentation

Before proceeding with the computational analysis of filamentation, we present an analytic
treatment of filamentation that is based upon the perturbation solution of the complete Maxwell's
wave equation. The formalism is developed in gemeral terms, then applied to the ponderomotive and
thermal filamentation mechanisms separately. The general formalism is also heuristically extended to
include spatially and temporally incoherent ISI light. Results for both ponderomotive and thermal
filamentation of ISI light are also presented. In section IV, we will then compare results of the
computational and analytic treatments of filamentation.
A. Basic theory of Filamentation

The formalism_used here to describe the scaling of thresholds and growth rates of filamentation
is well established?’s>®>, Perturbations of plane waves in homogeneous plasmas are analyzed using the
exact Maxwell’s wave equation for the electric fielzd and an expansion of the dielectrikeéscn{l tant in
terms of the perturbed laser intensity, €(<(E+0E)“>)%€_+€'E*SE. Choosing E= E_x ok z),
and assuming the perturbed field JE has the form _oexp[i(uot-koz]+k s+i(k x+k y)] where
kg<<kx+ky’ one finds a general dispersion relation for both ponderomotive mﬁ thermal mechanisms:

2 .2 [26€,2 .2 2 .2 2 2 |
(kx+ky)[ a2- ) - (kx+ky)] = o (3.1)

€
o

where Je=0€(k ,kn,l +01)/3{S1/1 |; de=(n/n_)7_ for the ponderomotive mechanism and
x ) o J % . .

de=(n/n )7T2/[kx+ky] for the thermal mechanism. FFor notatjional convenience, we define k as a
wavenumber normalized by the laser vacuum wavenumber; i.e., kj=k lc/uo). We have assumed OE
parallel to E, as this is the fastest growing configuration. For the one dimensional case we let
k_=0, kx=k , and assume that the two dimensional case is confined to k_=k_=k;/V2; then the

géneral expression for the instability threshold in N transverse dimensions (where N=1 or 2) is:

- -1
2 1 1 A
kl $ [265 * Neo] - (3.2)

-

For any interaction strength (J€), there will be some range of unstable perturbation wavelengths of
the incident light intensity. There remains the questions as to whether this range is relevant
(contained in the interaction region), and if so, whether the perturbations have room to grow within
the propagation region. The spatial growth rate has a maximum at a value kTa‘x determined by the
a root of the equation:

a2 2]’ (. 6] 4 oo =0 (3.9

where §€’ is differentiation of §€ with respect to (k )-2. For the ponderomotive mechanism J€’=0,
and for the thermal mechanism §€'= (n/n )7p,. ~Using these relations in (3.3) yields the fastest
growing modes and their associated growth rates for the thermal and ponderomotive cases. The
results are shown in Table I; they will be compared to numerical solutions later.

Although the fastest growing thermal mode has an infinite wavelength, the growth rate is
approximately constant for kl<<1, which is generally the region of interest. Thus, for thermal
filamentatipn, most modes grow at the same rate. In contrast, the ponderomotive growth rate is ~k
for small k;. If the ponderomotive force is strong enough, there is some value of ky at which the
ponderomotive a7d thermal growth rates are equal. This point occurs for filaments of size
A /ko=(7 /1 .,)l 2. Ponderomotive filamentation is dominant for filaments smaller than this size,
while theme tilamentation is more important for the larger filaments. This suggests a scenario
whereby the thermal and ponderomotive mechanisms can couple: large wavelength modes can begin to
focus to due thermal filamentation, then become dominated by ponderomotive filamentation when the
filament becomes small enoungh.



B. ISI and filamentation.

The ISI optical smoothing technique leads to rapid, random fluctuations in the laser intensity.
If we average these fluctu /utlons over a time ¢ g then the fluctuations compared to the mean are
proportional to (t /t , where t_ is the coberence time of the laser.” Since the characteristic
plasma hydrodyna.mlc reaponse time is much longer than the typical laser coherence time, the plasma
dielectric constant will respond to the time-averaged intemsity. As a simple wa.y to account for this,
we will substitute this time-averaged intensity perturbatlon (It /¢ ] 1/2 ) for the background
intensity (Io) in the formulas for the dielectric response, using a Suitabfe Value for t,yo After this
substitution, the filamentation formulas given in the last section will be re-derived.

This analysis ignores some effects which may contribute to the suppression or enhancement of
filamentation. For instance, the stochastic-like fluctuations in the density will increase the light
scattering and counteract filamentation. On the other hand, the time average of the intemnsity
fluctuation is treated linearly, although the interaction is itself nonlinear; this underestimates the
filamentation. It is implicitly assumed that corrections due to these effects are small.

The averaging time t__ is taken to be the characteristic time for the filamentation mechanism
to change the dielectric constant appreciably over the transverse dimensions of the filament, A For
the ponderomotive mechanism this averaging time is the ion-acoustic transit time of the ﬁia.ment,
A /C For the thermal mechanism, the averaging time is the larger of the ion-acoustic transit time
a.nd the thermal conduction transit time, ne)\ /I!:e The ion-acoustic transit time is larger when the
ratio Ty A (/A (see eqn [2.8b]) is less than ome. This ratio is largest for cooler, short wavelength
plasmas "'1/['1‘ 2\ ol) and large filaments. In a worst case ()n =0.254m in a CH plasma with
T =1keV, n/lnc—O 285) %the ion-acoustic time is the dominant averagmg time for Ay $3504m. Since
this worst-case value of 350fm is larger than almost all filaments studied here, we will use the
acoustic transit time as the averaging time for both thermal and ponderomotive filamentation.

The filamentation analysis presented in section III.A is now repeated, except that the
background dielectric constant depends upon the time a.veraged mtensxty perturbation level, instead of
the plane wave intensity. Thus, we substitute I (t_/¢ ) 1/2 (with ¢, =\ 1/C gy for I in the

av
expressions for the dielectric change, J€, given in sechon fII A. For the ponderomotxve mecha.msm
this substitution gives:

_n . .1/2.7 j1/2
ﬁp—ngg (k]

and:

)____1__11 1/2 5/2
5ep— 4n [k]

where we have defined a normalized coherence time as:

t C 1/2 t_(psec)
__es . 1+1/2 c
o= 2 (L2122 1 _(rev)] S G

For the thermal mechanism,

A/2

~ 1 -3/2
6 n 7'1‘2 c [k

1

and



3 1/2.7 11/2
651’:=Z% Tc/ [kl] / :

Using these equations in eqns (3.1)-(3.3) gives the relations for ISI filamentation found in Table II.
These results will be compared to results of the numerical simulations in the next section.
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IV. Analysis and Discussion

In this section, we use the code described in section II to simulate filamentation behavior of
different laser beam profiles. We proceed in a carefully structured manner, beginning with simple,
well-characterized problems having known solutions. Complexity is added to the interaction a step at
a time, gradually building up to simulations of realistic laser beams propagating in laboratory-type
laser-plasmas. As we proceed, unique characteristics of the newly added features are identified and
discussed. The analytic results of section III are also compared to these simulations, and the
limitations of the analysis are addressed.

We begin with the simplest case of filamentation: the propagation of a Gaussian laser beam in
a homogeneous, nonabsorbing, medium. Analytic solutions of this model for ponderomotive and
thermal filamentation are developed in the appendix, and are compared to the numerical solutions.
This comparison exposes the limitations of analytic methods for even the simplest cases of
filamentation, and illustrates the physics that distinguishes the two types of filamentation. Next, the
beam profile made more complex while the plasma remains simple: we consider generic and optically
smoathed RPS and ISI laser beams. These more realistic beams are composed of randomly phased
perturbations of different wavelengths, and introduce the possibility of nonlinear mode coupling.
Finally, we add inhomogeneity and absorption to the plasma model, and consider laboratory plasmas
relevant to ICF experiments.

Throughout this analysis, we will nuse two basic parameters to measure filamentation effects: the
filament focal length and the focal intensity maximum. These quantities are useful filamentation
measures for two reasons: first, these parameters can be directly compared to the analytic theory.
Secondly, the focal length gives the minimum size of a plasma in which filamentation effects may be
observed, while the maximum intensity quantifies the impa.ct of filamentation on other nonlinear
processes.

The filament focal length and intensity maximum are not easily defined except in the simplest
of cases. In these simple cases, the propagation of a single-peaked incident intensity profile, the first
intensity maximum in the propagation direction corresponds to the focus of the filament. In more
complex beamn profiles, however, there may be (and usually are) many intensity maxima along the
propagation distance, of varying degrees of magnitude. The usual practice here is to identify the
focus at the first intensity maximum encountered along the propagation direction; further, it is
supposed that this first maximum is due to focusing of the fastest growing mode. In some cases,
however, intensity maximums farther along in the propagation may be considerably more intense than
the first. In this case, more than one focal length or intensity maximum can be defined.

In the following discussion, we make the following definitions for notational convenience: the
maximum value of a distribution I(x,s,t}) over all values of the variable x is denoted as MAX{I}_,
while the first maximum of the distribution in the direction of the variable s (i.e., where dI/dz=0
and d I/dz <0 for the smallest value of z} is denoted MAXI{I} Also, the filamentation focal
length is sometimes abbreviated as
A. Filamentation in Homogeneous, I‘E)nabsorbmg Plasmas: Gaussian filaments

The accuracy of theoretical approximations and predictions is evaluated using the laser-plasma
propagation code previously described. For the purposes of the calculation and comparison, we begin
by using a nonabsorbing and homogeneous plasma. Nonabsorbing means that the laser energy is not
depleted as it propagates through the plasma; however, the laser is allowed to heat the plasma to
produce the thermal and pressure gradients needed for thermal filamentation. Homogeneity refers only
to the background plasma; again, the laser is allowed to produce the inhomogeneity needed for
filamentation. Although unrealistic in some ways, this plasma model provides a good test-bed for
basic filamentation phenomena; it shows the gqualitative filamentation behavior, and allows us to
compare the calenlations to the non-absorbing, homogenous plasma theory of section III. The first
order effects of absorption and inhomogeneity only alter the quantitative behavior of filamentation.
“Absorption counteracts filamentation to first order by decreasing the growth rate by the amount - Ky
inhomogeneity, on the other hand, causes local variations in the strength of the focusing forces.
Inclusion of these factors is considered in section IV.B, which addresses laboratory plasmas.

We begin by considering the focusing of a Gaussian filament in the steady state limit. The
numerical results can then be compared directly to approximate solutions of the steady-state nonlinear
propagation equation (2.3). The derivation and results of this Gaussian model for the ponderomotive
and thermal mechanisms are given in the appendix to this paper; the scaling and megnitude of the
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focal lengths found there are the same or similar to the results given in Table I. The Gaussian
model also predicts peak intensities reached during self-focusing. We compare the calculations to the
results of this model for the cases of ponderomotive and thermal filamentation separately.

As a first example, we calculate the intensity as a function of the distance of propagation into
the plasma for a case where only the ponderomotive force is active (fig. 1). The initial radius of the
filament is a =20\  and the interaction strength is q7_=5X10"" (this is 40 times the threshold value).
The model and calculation results are comparable: the focal length (350)\0) lies within ~10% of the
predicted result (315X ), implying that the Gaussian model is fairly accurate in determining focal
.lengths; this agrees wit% previous findings™’“”, However, the predicted focal intensity is much larger
than we find with the code. In part this is due to the sensitivity of the model’s peak intensity to
the focal spot radius: small changes in the radius give rise to large changes in the peak intensity
when the focal spot radius is small (MAX{I} ~1/width). In reality, the filament is not comstrained
to stay Gaunssian, and the peak intensity is not so semsitive to the filament radius. (The inability of
the Gaussian model to account for saturation effects in the dielectric response is not important here,
as the maximum dielectric change in the simulation is $0.5%).

After the first focus, the filament usually behaves quite differently from the model; propagation
can be periodic, although it usually has a more complex periodicity than predicted. The behavior
appears to depend on the power level of the filament. Looking at the long distance behavior of the
simulation just described (fig. 2b, 40X threshold power), we observe the beam breaking up into two
off-axis filaments which focus twice independently, and then combining again to form a single
filament. The behavior is repeated again, but each time the central single filament is degraded in
power; the periodicity is only approximate since the original Gaussian is not reproduced. At higher
powers (fig. 2c, 450X threshold), the beam breaks into many filaments, which spray outward from the
region of the first focus; in contrast a lower power example (fig. 2a, 10X threshold) exhibits the
simple oscillation predicted by the model, although the oscillation is slowly damped by light escaping
the filament. In general, the number of filaments formed after the first focus is an increasing
function of the incident beam power

The scaling behavior of the spatial growth rate compares favorably with the model. Fig. 3a
plots the focal distance as a function of 7_ for ponderomotively focused Gaussian filaments with
initial 1/e radius a.°=4OX°. (The focal distance is defined as the distance from the beginning of the
propagation in the plasma to the point where the intensity reaches its first ma.ximnm.% A linear
least-squares fit through the data points yields the empirical dependence I/a.o“—"fo‘ , which is
comparable to the predicted dependence lf/a. :7'0'5 (from the appendix and table I).” Calculations
performed for filaments with a Gaussian 1/e intensity radius a°=20)\02 a.lsf exhibit this scaling.

The peak focal intensities are very weakly dependent upon 7 ao/)\o, the theoretical controlling
pargmeter, and are much smaller than predicted (fig. Sb’;. Again, the appxéox'ama.t.ion
€(E E)¥€ +€'E E in the model is not violated even for the largest values of 7 &O/X . This
indicates that deviations from the Gaussian constant-shape ansatz are the failure mode in the model.
The deviations occur because the expansion E(x)ﬁe(x=0)+.5€xxx used in the Gaussian model is
substantially violated in the simulation. .

These calculations were repeated using only the thermal filamentation mechanism; the results
are shown in fig. 4. The initial filament radius is again a =40Xo, and the interaction strength
parameter varies from q 2‘-“- 5X10™ to 5X10°%. The behavior hé:rf is not as simple as in the
ponderomotive case. At low powers the focal length varies as ~[ """, matching quite closely the
scaling of the predicted values, although the magnitude of the focal length is consistently ~20% larger
than the predicted value. Also, the maximum intensities are 50%-65% lower than predicted, though
they show the correct scaling with the filament intensity. :

Contrary to expectation, as the interaction strength increases to high values (7T22-4X10-6), the
focal length increases and the focal intensity decreases. Closer examination of the simulation reveals
the cause of this curious behavior: at high intensities, the temperature profile becomes flat-topped and
sharp-sided (fig. 5). The electron thermal conductivity is a strong power of the temperature, so the
hot region (high conductivity)} is smooth, and the cold region {low conductivity) has steep
temperature gradients. The density profile is shaped like the temperature profile (5ne"'-5T )}, so the
filament refract primarily at the edges. The light refracted at this sharp edge is refracted into large
angles, and the resulting interference of this light with the main body of the filament creates high
frequency intensity structure. This structure increases the net diffractive force of the filament and
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counteracts the focusing tendency of the density channel; thus the focusing is reduced. The deliberate
creation of high frequency structure on the incident light has been suggested as a filamentation
suppression mechanism™", and is also the basis of the RPS illumination technique. Here, however,
the structure is created by the laser-plasma interaction itself.

The sharp-sided, flat-topped temperature profiles are dependent on the boundary conditions of
the code. The largest wavelength temperature perturbation is limited to the size of the numerical
mesh, which is only a few times larger than the filament. Normally, this is of little consequence: if
there is moderate heating, the conductivity is approximately constant and the Fourier spectra of the
temperature has the same spectral range as the source. When the heating is strong however,
significant energy is transferred into both longer and shorter wavelength modes due to the
nonlinearities in the electron thermal conductivity and collision frequency: This energy cannot be put
into modes larger than the mesh size, so it is forced into the numerically resolvable spectrum, in
modes with shorter wavelengths. These amplified short wavelength modes can then be further
enhanced by the temperature steepening associated with the nonlinear conductivity. Although these
particular results presented here are due in some part to the computational constraints, the profile
steepening effect is a well-known phenomenon™” in nonlinear heat transport. The defocusing effect for
strong thermal filamentation exists, but the quantitative threshold calculated here is dependent on the
actual boundary conditions of the system, and is not universal. As the size of the system increases
(relative to the heated region), the defocusing threshold will tend to increase.

The results of Gaussian beam filamentation show the limitations of the analysis for ideal
filaments in simple plasmas. Ponderomotive filamentation focal length scaling with intensity agrees
well with theory, but the predictions of the peak focal intensity are very inaccurate. In addition, the
propagation behavior is different than predicted; as the interaction gets sironger, more filaments are
formed as the beam breaks up after the first focus. Calculations and predictions of thermal
filamentation agree fairly well in scaling and magnitude, but only at lower powers. At higher
powers, nonlinear temperature variations cause focusing effects to weaken. Aware of these constraints
and behaviors, we are prepared to examine filamentation occurring with more complex laser
- fllumination profiles. :

B. Filamentation in Homogeneous, Nonabsorbing Plasmas: Complex Laser Beams.

In this section we investigate the behavior of realistic illumination profiles in simple plasmas.
Three different laser beam types are considered here: the typical or generic laser beam, the RPS laser
beam, and the ISI laser beam. In part (i), these profiles are defined and their characteristic features
are discussed. Then, in parts (ii) through (iv), each profile is considered in turn, with the results of
the filamentation simulations presented. The qualitative features of these simulations are discussed
and the quantitative results are compared to theory.

i. Definition and Construction of Complex Laser Beams.

We will firast consider a ”generic® laser intensity profile, representing a typical, high-power laser
beam. These profiles are determined by many installation-dependent (and time-dependent) paramteters.
Imperfections of the optical system design or components, optical misalignment, or temperature
fluctuations present in the optical components during a specific shot, can cause unique aberrations in
the output beam. In gain-saturated lasers, the aberration structure is preferentially in the phase of
the laser electric field. Further aggravating the problem, the desired focal spot size for large scale-
length laser-plasma interactions is much larger than the diffraction-limited spot size, and quasi-near
field intensity distributions must be used. In the quasi-near field, even small amounts of aberration
show up as significant structure in the intemsity profile. Laser intensity profiles are sometimes
characterized by their peak-to-valley intensity ratio; $:1 to 10:1 are not uncommon values for this
parameter.

In this study, a variety of generic laser profiles with different root-mean-square standard
deviations are used (Urmszfdx(l(x)-l vg)2/‘“(:()2(1;{). The peak-to-average intensity difference is ~4
times the value of 0ims 3° typical values of o are in the range of 0.25 to 1.0; 0 ns=0-5 is
often used as the representative value. In the code, these profiles are constructed g;r adding
randomly phased electric field fluctuations onto a DC (k_=0) electric field term. Electric field
fluctuations of all wavelengths (excepting the DC term) have the same amplitude, and span the
wavenumber spectrum (from lkl|=1/Xm to 1/2F, in increments of 1/}(m ; recall that all spatial
dimensions are scaled to A ). ~ Varying the k_#0 amplitude relative to atj(le DC amplitude gives
different values of O oms’ fhis construction gives two different characteristic amplitudes for the
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Fourier intensity spectrum (fig. 6a). If the magnitude of the DC electric field term is A_, and the
magnitude of the finite wavenumber E field variations is a,, then the intensity profile has Fourier
amplitydes that are of order "‘2A°a. +a% and 0.2, for the wavenumber ranges lk |—{1/X 1/2F}
and Ik |={1/2F:1/F} respectively. ~(The notation {a:b} denotes the range of values from & to b.)
For small values of L J— a1<<A and the larger wavenumber range is of considerably smaller
amplitude than the shorter wavenumber range. (In fig. 6a, with F/20 optics and a plasma mesh
length 400X° wide, these wavenumber ranges correspond to lkll— {0.0025:0.025} and lkll—
{0.025:0.05), respectively.)

Next we consider the random-phase-screen (RPS) illumination smoothing method. This is a
potentially attractive near-term method for beam control, since it can be used on existing laser
beams. The laser beam is passed through a simple random phase mask before it is focused down on
the target. This phase mask consists of a large number of discrete areas which randomly apply a
phase shift between 0 and 2¥ radians to the section of beam passing through it. (This is slightly
different than the current experimental version of RPS, where the randomly applied phase shifts are
either 0 or 7.7 """} At the lens focal plane, this produces a high frequency, spatially incoherent
pattern with a smooth envelope determined by the diffraction pattern of the individual phase-shifting
areas. This is similar to the ISI method, but without the laser bandwidth: the structure in the RPS
method is stationary in time. In principle, if the spatial structure has a high maximum wavenumber
kma.x, the filamentation growth rate will be suppressed (similar to the situation observed in section

.A with thermal filamentation). This principle can be quantified ysing the relations in table I;
filamentation is stabilized when k 2(2n To /n, )1 (ponderomotive) or k >(211 eTra/m )l 4 (thermal).
When there is appreciable energy in the hxgh wavenumber modes, they dxffra.ct substa.ntmlly over
distances smaller than the growth lengths of the unstable modes. If this small-scale diffraction causes
significant changes to the structure or phase of the larger unstable modes, filamentation may be
suppressed. Also, the presence of appreciable energy in these modes implies that there is less power
in the unstable modes, which contributes to stabilization.

The RPS technique generates an intensity profile that contains both larger amplitude and
higher wavenumber components than the generic profile. A typical profile (fig. 6) has higher peak
intensities and higher spatial frequencies than a corresponding gemeric profile. The wavenumber °
spectrum of the RPS beam is controlled mainly by the F number_ of the lens: the highest
wavenumber component of tke incident electric field has a wavenumber k(~1/2F. The DC (k l=0)
electric field term is of the same order as the finite wavenumber (k #0) elléctric fie]d amplitudes, so
the high and low wavenumber intensity ranges (lk;I={1/X ., - 1/2F} and |k l={1/2F:1/F},
respectively} will have amplitudes of the same order. Since RPS requires fast optics {'small F/#), the
largest wavenumber in these profiles is usually much larger than in the corresponding generic profile.
One of the purposes here is to bracket the acceptable F/# range for the RPS method.

Finally, we also simulate the induced-spatial-incoherence optical smoothing method. ISI in its
simplest form is produced by passing a broad-band laser beam through an echelon, or stepped
transmitting plate. Each echelon step, like the random-phase-screen, produces a phase shift by
imposing a time delay on the beam passing through. Unlike the RPS technique, the time delay of
each echelon step relative to any other step is longer than the laser coherence time, so that the
spatially incoherent structure produced at the focus completely changes on the time scale of the laser
coherence time. Since the coherence time (~1psec) can be made much shorter than gross plasma
hydrodynamic response times (~1C0ps), the plasma should respond hydrodynamically only to the time
average of the laser profile, which asymptotically approaches a smooth envelope fanction.

Of these three laser profile types, only ISI is inherently a time-dependent profile. For the
generic and RPS cases, the intensity profile is frozen in, and the plasma can reach a quasi-steady
equilibrium if the laser pulse is long enough (multi-nancseconds}). We have performed time-dependent
simulations using these stationary laser profiles, and they show close agreement with the steady state
simulations after times on the order of a few Ay/C_. (In other specific cases, it has been shown
that steady state laser profiles can result in inherently time-dependent behavior®“. In our formalism,
the neglect of axial density coupling in eqns. (2.7) and (2.9) has ruled out the possibility of this

type of nonstationary behavior, so the issue is not addressed here. However, it deserves closer
investigation in the future))
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ii. Filamentation of Generic Laser Beams

We now consider the behavior of the generic laser beam in the homogeneous, nonabsorbin
plasma where only the ponderomotive force is operative. Fig. 7 shows a typical result (7_=1.3X10"",
¢__ =.5, and F/10 optics): in general, the hot spots behave like individual noninteracting filaments
simiar to the Gaussian filament shown earlier. Interaction between filaments tends to occur only if
two hot spots happen to be initially close (distances on the order of their own diameter), or on an
initially intersecting path.

The behavior of the individual Fourier modes in this simulation can be compared directly to
perturbation theory. One might expect the comparison to be adequate up to the point where the
mode coupling is appreciable. Fig. 8 shows the low order Fourier mode amplitudes of the intensity
distribution, and compares them to the results found by applying the factor exp(k (k l)L) (from table
I) to the incident intensity distribution. In theory, the most unstable moge 13 at k {=0.025
(A =40)\°); in the simulation this mode closely follows the predicted growth for z£400\ , after which
it levels off and then decreases. Qther theoretically unstable modes grow at rates gifferent {and
generally less) than predicted. For k 1?,0.04, the modes are supposedly stable, yet significant energy
appears to be going into these modes after propagation distances of 100-200A . This shift of energy
from small k; to large k, is expected for filaments that focus and conmtract in size.

Although the individual modes do not behave as predicted due to mode coupling effects, the
focal length predictions are fairly accurate. Fig. 9 shows the variation of focal length and focal
intensity with q_ for simulations with F/20 and F/10 optics and 0 ms=0-5 on 2 400)\0 wide mesh;
the focus is defined at the point MAX, {MAX(I} } . There is close agreement between the focal
length prediction and simulation: the simulation restﬁts lie very near to the predicted values (from
table I) shown by the dotted line. (This is partially fortuitous, since the formulas in table I are
independent of 0__ . Although different values of o s result in different focal lengths (e.g., smaller
0 s Sives larger 1), the sealing of I with 7_ is simiar.) For smaller values of 7,, L=y (sable 1)
since the fastest growing mode is representeg in the incident intensity profile (k)">*<1/F). For
7..30.005, however, the fastest growing mode is limited by the smallest perturbation wavelength in
the incident spectrum: A =20\ . In this range of 7_, the fastest growing mode is constant and the
" focal length scales as lf"'];O'SO (table I). .Im contrast to the focal length predictions, the intensity
maximum predictions are very inaccurate. Two regimes appear to have been reversed between theory
and simul;;tion: at small 7_, we expect MAX{I}XZ"cbnsta.nt (since I_ =7 k12 [see appendix]|, and
kma.x~71 Z [table I}), and instead we observe a rapidly increasing WX{P}XZ. For 7_x0.005 we
expect {1} 7 (table I, using krfu"consta.nt), and we observe a constant or slightFy declining
value of MAX{I}. _ Fwith increasing 7 .

In summary, the focal length pxpedictions seem to apply better than expected for ponderomotive
filamentation of generic laser profiles composed of many modes. In contrast, the predictions of
intensity maxima are quite inaccurate in the same situation. The same tendencies were noted with
the Gaussian beam simulations (see fig. 3).

With the thermal filamentation mechanism acting alone on the generic laser profiles, we
observe a qualitatively different behavior: the filaments tend to attract one another over distances
much greater than their own dimensions (fig. 10: 7T2=1.2X10'6, F/20, and ¢__ =0.5). The diffusive
electron thermal conduction produces temperature and density structures much larger than the hot
spots; the result is the development of large wavelength intensity modes, composed of many smaller
scale filaments. This large scale *supermode® undergoes large scale periodic focusing and defocusing
when propagating over large distances. Since the most unatable mode is at k;=0, and the growth
length decreases monotonically as k20, the dimension of this supermode is limited only by the size
of the physical system. The gross Jmumina.tion symmetry can be affected by this filament clustering
behavior. »

The applicability of the perturbation analysis to these type of profiles is assessed by examining
a Fourier decomposition of the intensity profile (fig. 11). Simulation and theory agree that the
fastest growing mode is the smallest wavenumber (kl=0.0025) of the system. The periodicity evident
in the lowest order mode matches up with the gross periodicity of the distribution as seen in fig. 10.
The theoretical period of this mode is "'580)\0, about 1/3 of the measured periodicity of 1500X .
The growth rates for other modes in the simulation also tend to be smaller than predicted, and mode
coupling effects are evident after propagation distances of a few hundred )\o into the plasma.
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The observed filamentation parameters for thermal filamentation of generic beams are shown in
fig. 12 as a function of Tra for beams with & §=0-5 and F/20 optics. The theoretical focal length
and MAXI{MAX{I}X} v:ﬁues are shown with the dotted lines. The scalings observed in the
simulation match these }airly well, but the magnitude of the values indicate much less filamentation
than is predicted: the focal lengths are ~3X larger, and the intensity maximums are ~100X larger.
Although the intensity peaks are much smaller than predicted, there is a definite sensitivity to
interaction strength, in contrast to the ponderomotive mechanism.

iii. Filamentation of RPS Laser Beams

Next, we will consider the effect of the RPS optical smoothing method on filamentation. The
- profile of the RPS beam, as noted earlier, differs from a severely aberrated generic laser beam mainly
in the "larger extent of the RPS wavenumber spectrum; this extent is determined by the F/# of the
focusing lens. Here, we vary the F/# of the RPS profile and measure the filamentation intensit
increase. These are shown in fig. 13 for four cases: (a) pondeemmotive mechanism only: 7p=1.3X10'3,
Tra=0; (b)_ thermal mechanism only: 7_=0, ']T2=1.2X10' ; {c) both mechanisms: 7 =1.3X10"",
7T2=1.2X10 ; and (d) no mechanisms: 9 =7mn,=0. There is a clear trend towards sma.lfer intensity
maximums as the F/# decreases. For optics SF/5, there is little increase in the peak intensity
compared to the levels attained in free propagation (i.e., all filamentation turned off). The threshold
perturbation wavelengths for ponderomotive and thermal filamentation are about 30\ , and the
simulations were done on a mesh with a transverse length of 400\ . Thus, as the F/# decreases
more energy is put into the ﬁlamen%ﬂgn—stabilized wavelength region, A l<30)‘o' The amount of
energy in the_ﬁatuble r?odéa (ky2k " "=Threshold, wavenumber} is given approximately by the
expression (1-k [F/#])3 2, so dilferent values of k™" change the magnitude of the filameptation
suppression effect. Also, since ponderomotive filamentation tends to have larger values of k than
thermal filamentation, the RPS method should be more effective in suppressing ponderomotive
filamentation.

There are possible concerns with the RPS smoothing technique: first, the typical intensity
maximum is still of order 10 times the average intensity value, even for the fastest optics. Another
concern is that large laser-plasma interaction chambers and laser-fusion reactor designs require slow
optics (,?F/20) in order to reduce damage to optics and minimize the surface area taken up by optics
in the interaction chamber; fast optics can not be used in these applications. There is a possibility,
however, that the many beams used in symmetrically illuminated reactor designs may provide the
effect of fast optics: since any area of the pellet will be illuminated by a large number of beams

incident at large relative angles, the small F/# (~F/1) intensity distribution that is formed may
suppress filamentation.

iv. Filamentation of ISI Laser Beams

We now consider ISI illumination incident on the homogeneous nonabsorbing plasma. Direct
comparison with the other methods is more difficult, since the inherent time dependence of ISI
irradiation complicates the measurement of filamentation. The observables, instead of possessing a
single value, are now represented by probability distribution functions of the independent variables z,
x, and t. As a result, filamentation parameters such as intensity peaks or focal distances can be
defined in many different ways which give different values; we often use more than one definition
when evaluating a parameter. (In the following, a time average of a distribution I(x,s,t) is denoted
by the brackets < >, defined as: <I(x,z)>= [dt’I{x,s,t’)/[dt".)

An example of ISI with only the ponderomotive force acting is shown in fig. 14. The
interaction parameters are Y_=0.0051, T =3.2, and ne/nm_i =0.5; the incident lens is F/20, and 10
echelon steps are resolved on the 200\ ~ wide calculationn.r mesh. Fig. 14(c} shows the intensity
distribution <I(x,s)> averaged over 84 coherence times. Little intensity magnification is seen: the
peak average intensity (MAX{<I(x,s5)>} ) is only ~1.5 times the incident peak average intensity
(MAX{<I(x,z=O)>}x= 1.281 ). One of the most noticeable changes in the intensity is the
development of high wavenumbers in the spatial structure as it propagates into the plasma. Plots of
the instantaneous irradiation at 42 and 84&c exhibit high intensity filaments (peak intensities as large
as 12XI°) in the plasma. These filamentary structures move about rapidly in the plasma and
produce a much smoother time-averaged distribution. This is favorable for hydrodynamic or other
long-time scale processes which will respond only to the smoothed average intensity distribution.
However, many laser-plasma parametric instabilities (e.g., SRS, SBS, 2w _, etc.}) have growth times on
the order of the laser coherence time and may respond to the rapidly 3hifting intensity spikes. The
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magnitude of the differences in these two distributions is seen by comparing the time-averaged
intensity maxima in the plasma, <MAX{I(z,x,t)}_>, to the maxima of the time-averaged intensity,
MAX{<I(x,z)>} (fig. 15&.) The averaged intenﬁty maxima show the long term existence of these
spikes; the a.vera.ge maximum intensity is ~10I , compared to the average incident maximum of 3.8I .

Another measure of the importance of the instantaneous filaments is given by the intensity
probability distribution at a given point in the plasma. The (time averaged) incident intensity
probability distribution is® pI/1 )= exp(-1/I ); filamentation effects cause enhancement of the higher
intensity portion of this éxstnbutxon as the laser propagates into the plasma. When this
enhancement occurs, it is useful to know how much energy resides in filaments; it could then be
possible to estimate how much energy is available to drive other plasma instabilities. The energy
redistribution is found by integrating the first moment of the intensity probability distribution
function to determine how much energy is at or above a certain intensity. We call this the
integrated energy distribution function (IEDF), and define it here as:

IEDF (1/I ) = j;/I & xp (%) J:dX Xpy (%)

o

The incident distribution function is: IEDF(I/I ,3=0)= (1+I/I Jexp(-I/I ). The change in this
distribution is shown as a function of the propaga.txon distance in ﬁg 15b, where the high intensity
enhancement due to filament formation is evident. The total amount of energy in the high intensity
region is significant: ~5% of the emergy appears at intensities greater than ~9I in the bulk of the
plasma. In contrast, at z=0, ~0.1% of the energy is at intensities greater than o1 .

The density variations responsible for the filaments observed in the instantaneous intensity
distributions are relatively small, MAX{16n /n |} <5% {fig. 18). These shallow density channels
produce filaments because the phase shzft.s a.re mtegruted over several hundred A _propagation
distances. This is particularly true in these homogeneous nonabsorbing plasmas, since t?xe coupling is
high over the entire propagation region. In contrast, the high coupling regions in laboratory plasmas
are much smaller in size, and occur after most of the propagation (and most of the absorption] has
taken place; we find in the next section that laboratory plasmas generally do not give rise to the
magnitude of filamentation seen in these simple plasmas.

The results of this particular simulation can be compared to the theory. Using Table II, we
find that the fastest growing mode for 7 Ti'/z—g 1X1073 and n/nc—O 5 is Ay=30A . This mode is
close to the nummum intensity wavelength generated by the F/20 optics (20)\0) ’.Bhe characteristic
growth length (k ) of this fastest growing mode is A ~1800\  (Table II), and corresponds to a focal
length li-"-'320k Pappend)x) There are several ways o meuurmg a time-averaged focal length in the
simulation, of which three are used here: (1.) the position of highest time-averaged maximum
mtensxty (I at MAX{<MAX{1} >} ), (2.) the position of highest maximum time-averaged intensity

at MAX{<I>} ), and 3) the time-averaged position of maximum intensity {l. at
LLA.X{I} >) (1. *and (2.) can be found directly from fig. 15(a), the third is calculated during
the slmula.ézon These values are: (1.) 200) (2.) 182. 5)\ and (3.) 242X\ o respectively. All are
somewhat less than the predicted value; this suggests that the averaging done by the plasma is
nonlinear, as it responds more to the intensity peaks in the distribution than the time averaged
values.

As a more general test of the ISI theory, we examine 2 larger range of parameters, and
calculate the scaling behavior. Many ISI ponderomotive filamentation runs have been made with
different values of both mtera.ctxon strength and coherence time. 4. and T_ were independently
varied in the ranges 5X10° <7 <2X10° -2 and 05<7 <3.2. Al sunnla.tlonap shown in fig. 17 were done
with 40 echelon steps, F/20 optics, and n/n =05 on a mesh 200\ across; the results are not
sensitive to F/# (for F 10) or mesh size. The focal lengths &sxng the three methods of
deter mahon mentioned previously) are shown as a function of the theoretical scaling parameter
'[ The dotted line is the focal length range expected from theory, as determined by the fastest
growmg mode oc/curm}? in the incident radiation. At the lower powers, the fastest growing mode
varies as "‘{7 (table ). At higher intensities, the fastest growxng mode in table II has a
wavelength smuilct than any in the incident spectrum ()\ . —20)\ /hould be the fastest
growing mode. The focal lengths at higher powers should Tihen va.ry as 1"‘[m . The data is
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closer tf/Zth—eO %]4)7‘3'/2]-1/2 variation throughout; a least squares fit using all of the points gives
lf~[7p‘rc ] 777, "This scaling suggests that the dominant fastest growing wavelength ()‘inax) is
constant.

The averaged maximum intensities are plotted as a function of 7 Ti' /2 in fig. 17(b). There is
a distinct separation of these averaged values: the time averaged maximum values, <MAX{I} >, are
always much larger than the maximum time averaged values, MAX{<I>}X. There seems to be little
consistent variation in the luttﬁ fiusthe interaction strength is increased, whereas the values of
<MAX{I} > increase as ~[y 1'1‘ 1.

Thermal filamentation calculations were also done using ISI illumination in these simple
plasmas. An example is shown in detail in fig. 18; this particular simulation is performed with F/20
opties, T =0.53, n/nc=0.5, Tt =2X10'6, and _'-]T1=3.8x10'4. Even with incoherent illumination, the
characteristic signature of thermal filamentation is apparent in the instantaneous intensity
distribations: the filaments attract one another, forming large modes composed of high wavenumber
structure. Again, this is associated with large-scale density and temperature fluctuations (fig. 19).
As in the ponderomotive mechanism, the time averaging smears out most of the structure seen in the
snapshots; however, significant structure in both high and low-wavenumber modes can still be seen in
the time average, especially in the lowest order modes.

Once again the time-averaged distribution is much smoother than the instantaneous
distributions suggest; the averaged maximum intensity <MAX{I}x> is significantly larger than the
maximum averaged intensity MAX{<I>}_ (fig. 20a). The energy distribution looks very similar to
the ponderomotively driven case (fig. 26‘); cf. fig. 15b); the integrated energy distribution function
reveals that ~5% of the laser emergy is at intensities greater than 1010, comparable to the
ponderomotive example.

In fig. 21 the theoretical predictions are compared with a wide variety of runs at different
intensities and coherence times. 7 and 7_ were independently varied in the ranges
2.5X10° <7 <5%10°% and 0.5<T <5.4.7 “All of the simulations included the theoretical fastest
growin§/2m_2§;; in the incident intensity spectrum, so the growth length should scale as
7 2Tc ] . The agreement between theory and calculation is better than expected in both
scaling and magnitude. There is a large scatter in the peak intensity values MAXI{MAX{<I>} }z
for small values of Ym,7T because the focusing is very mild; these intensities are only a ?ew
percent greater than the incident peak (fig. 21b). Such peaks are probably due to statistical
scattering of the light, not filamentation. The expected separation between the values of
MAX{<I>% and <MAX{I}_ _> is observed, and a slight dependence on the interaction strength

~ /2075, . X,3

([ g/ *[75) is noted.
’ These simulations of ISI in simple plasmas show that the ISI filamentation formulas in table II
are only moderately accurate. The focal length predictions fit the observed thermal filamentation
behavior (fig. 21a) better than the observed ponderomotive filamentation behavior (fig. 17a). This
can be explained by noting that thermal filaments experience longer time-averaging than
ponderomotive filaments. The ponderomotively unstable filaments are smaller in size (so the
averaging time A /Ca is smaller) than the thermally unstable modes. Since they are averaged less,
ponderomotively é.riven perturbations have a larger statistical deviation. Some perturbation modes
(that happen to be larger than average) will grow faster, and produce shorter focal lengths, than
predicted. This is the behavior seen with the ponderomotive simulations in fig. 17a. Thus, it is
reasonable to expect our ISI filamentation theory to model thermal filamentation more accurately than
ponderomotive filamentation.
C. Filamentation of Complex Laser Beams in Laboratory Plasmas

We conclude the analysis with a treatment of filamentation in more realistic (i.e., absorbing
and inhomogeneous) plasmas, in particular those that are produced in ICF research laboratories or
foreseen for ICF applications. We cannot attempt an exhaustive description, as there is a huge range
of conditions encountered in these laboratory plasmas; instead, we concentrate on examples of plasmas
that are generated by moderately high power laser light at wavelengths of 1.084m, 0.534m, and
0.25pm. These wavelengths correspond to Nd-glass lasers, frequency-doubled Nd-glass lasers, and KrF
or Nd-glass frequency-quadrupled lasers, respectively. For the 1.08 and 0.53f4m cases, plasma .Pr;,oﬁ;%s
were generated by the NRL FAST2D hydrocode to simulate near-term flat-target experiments™ “'“™'*";
the two-dimensional density and temperature distributions are averaged in the transverse direction to
produce the onme-dimensional density and temperature profiles used in the code. The 0.254m laser-
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plasma profile was generated by the NRL FAST1D hydrocode'.’6 in a simulation of a few-mega.jé)ule
KrF-driven reactor-sized pellet™. The first two plasmas have scalelengths on the order of 10%) ,
while the last is a plasma with a scalelength on the order of 104)\ . These density and temperatu?e
profiles, along with the associated laser parameters, are shown in fog. 22. In all of the calculations
presented here, the laser light is propagated in the region from 0.01n ., to 0.5n_..; propagation to
higher density is limited by the assumptions underlying the validity of ‘the parabolic wave equation.
The filamentation coupling is high in the region between 0.01 and 0.5n rit? but the propagation
distance is small, and the absorption is relatively high (especially for the shorter wavelength plasmas).
Thus, little additional filamentation should occur im this higher density region.

In each plasma there is a range of perturbation wavelengths over which either the
ponderomotive or thermal mechanism dominates. Thermal filamentation dominates at larger scales,
ponderomotive at the shorter scales. As not7d in section III.A, these regions are delineated by the
characteristic wavelength x'l_/k =(7p/7T2)1 2. As the laser wavelength decreases (with constant-
intensity), the relevant plasma density increases and the plasma temperature decreases slightly (due to
the higher plasma heat capacity). Thus, with smaller laser wavelength, the ponderomotive
contribution decreases (7 "‘Xo), the thermal contribution increases (7 "T; }, and thermal
fila.mezntg._t}'zo’n dominates Over a wider range of wavelengths. In addition, the absorption rate
(%y~n,T ) of the plasma increases as the laser wavelength decreases. The higher absorption raises
the filamentation threshold and lowers the growth rate, since the filament must now grow faster than
it is absorbed. We find that absorption can effectively suppress filamentation in shorter wavelength
plasmas, ’

The 1.064m lager-plasma absorbs little laser light in %he region 0.01nc i to 0'5ncri , and the
ponderomotive mechanism is strong (7,~0.016, 7p,~2X10"" at n/n_ ii:=0.25]3. The pomferomotive
mechanism dominates the thermal mechanism for A{5270\ , which includes most of the range of the
simulations. This plasma efficiently filaments laser light, including incident light that is very
uniform. Fig. 23a shows simulation results for generic laser profiles with different incident 0__ :
. . . . R . . ms
incident beams with perturbation levels g, s20.05 begin to filament. Since most high-power faser
beams have ¢__ >>0.05, this implies that g_imentation is a common event at this laser wavelength.
Using a random-phase screen with 80 phase shift sections and F/5 optics does not improve matters
significantly: filaments with peak intensities z251° are still observed.

When ISI is applied at 1.08gm with T =0.25 (tc=1psec, or Aw/w~0.003), filamentation is
appreciably, but not completely, suppressed [compare fig. 24b to fig. 23a). The instantaneous
intensity distributions (fig. 24a), the time averaged intensity maximums (<MAX{I}_ >, fig. 24b), and
the integrated energy distribution (fig. 24c) all show evidence of instantaneous f;ﬁa.ment formation.
The integrated energy distribution reveals constantly increasing levels of energy at all intensity levels;
although the beam begins with less than 5X1072% of its energy above 10l , at n/n =0.5, more than
2% of its energy is above 10l . The structure of these instantaneous filaments (fig. 24a) reflects the
dominance of the ponderomotive filamentation mechanism. The time averaged intensity distribution
(averaged over 2507, (fig. 24d) is much smoother, since the filaments move about and do not
concentrate in a single area. Residual fluctuations left on the incident profile show little growth
co;n;)a.red to generic beams (MAX{<I>}X’1<2I° in fig. 24d; f. fig. 23a where MAX{<I>}x,z~10'
401 ).

® Filamentation is less dominant in the plasma created with the 0.53gm wavelength laser.
Although a significant fraction of the incident light gets to 0.5n__. , and the plasma is 60% larger
than the plasma at 1.064m, the smaller laser wavelength reduces the ponderomotive force effect
(7p’l'0.0057 at n/n_.=0.25). Thermal filamentation is stronger (']T229x10-7), and should dominate
ponderomotive effects for filaments with A 1380)\0. With generic laser profiles (fig. 23b), we find that
filamentation begins to occur when a moderate fluctuation level (& s 20.3) is incident; this
fluctuation level is well within the typical range. The RPS method with F/5 optics suppresses
filamentation somewhat, reducing filament intensities to about 12 times the average intensity (square
symbols, fig. 23b).

When ISI is applied to the 0.53pm plasma with 7T =1 (tc=2.1psec, or Aw/w:1.7X10‘3), it
suppresses filamentation about as well as the 1.084m case (fig. 25; cf. fig. 24). Apparently the
smaller interaction strength is offset by the longer interaction region (a3 measured in laser
wavelengths) in this plasma. Although thermal filamentation is stronger in this plasma, the structure
of the intensity distributions suggests that ponderomotive effects are still quite dominant.
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Finally, we consider filamentation in the 0.254m laser wavelength plasma. At ne/ncr.t=0.25,
the ponderomotive mechanism (7 "8.8X10'4) dominates the thermal filamentation mechanism
(Tpg™3-7¥107") for filament sizes A 5150\ . Thermal filamentation is actually less important here
than in the 0.534m case because é is smaller (Z=1 as opposed to Z=3.5) and the temperature is
slightly greater (due to a higher intensity and longer pulse length). This example is also different
from the other two cases because it has a much longer plasma scalelength, as would be generated in
a direct-drive laser-fusion reactor. The large scalelength presents a worse-case test for filamentation
at this wavelength, since it provides a longer gain path for the unstable modes. Counteracting this
effect is the higher absorption efficiency of short-wavelength laser plasmas. The amount of
filamentation in these plasmas will be determined by which one of these two opposing effects is
dominant.

Generic laser beams filament in this 0.254m plasma when the incident perturbation level is
greater than 0 ~0.2 (fig. 23c). The MAX{I} , vs. ¢ curve is similar to the curves from the
longer laser wavelength interactions, except that the pe’zﬂ: intensities are smaller. These smaller
intensities are due primarily to the higher absorption rate. The RPS method with F/5 optics does
not appear to significantly affect the filamentation tendency (see the square symbols in fig. 23c); peak
filament intensities 2121o are still observed.

ISI is significantly more effective at suppressing filamentation in this 0.25m plasma than it is
at the longer laser wavelengths. Applying ISI with T =1 (tc=0.9psec, or Au/u:gxm“*) eliminates
filamentation over both short and long time averages (figs. 26a and 26d). The integrated emergy
distribution (fig. 26c) and MAX{I}x curves (fig. 26b) show steadily decreasing energy levels at all
intensities as the beam propagates into the plasma. In addition, the ratio MAX{<I>}x-
MIN(<I>} )/<I Vg(z)> (fig. 26b) shows that the nonuniformity level is not increasing as the laser
propagates. ThE high absorptivity of the plasma appears to dominate any filamentation
enhancements due to the longer plasma scalelength.

20



V. Conclusions

We have examined ponderomotive and thermal filamentation mechanisms for Gaussian, ISI,
RPS, and generic (typical) laser beams in laser-produced plasmas. Time-dependent and steady-state
laser-plasma propagation codes have been constructed to simulate filamentation under these conditions.
A standard theoretical formulation of filamentation was presented and extended to account for
incoherent light, such as that found in ISI laser beams. The predictions of this analysis were then
compared to the results of the laser-plasma propagation codes. First, a simple plasma ({homogeneous
and non-absorbing) was used to study quantitative aspects of filamentation, and to compare the
results to the theory. Then, simulations were done with realistic laboratory plasmas to determine the
importance of filamentation in more complex experimental environments.

There is a distinctive behavior that differentiates the ponderomotive and thermal-conduction
dominated filamentation mechanisms. In general, ponderomotively-driven filaments interact locally
through interference effects of the light waves; these filaments tend to be independent from one
another. In thermally-driven filamentation, the high plasma conductivity creates long-scale density
gradients that cause light filaments to attract one another at large distances. This attraction
mechanism decreases the spatial coherence of the beam, increases the width of the perturbation
wavenumber spectrum, and can reduce or stabilize further large-scale self focusing. At high powers,
the effect is enhanced by the nonlinear behavior of the temperature profile.

Simulations of Gaussian laser beams show the limitations of the theoretical analysis. The
ponderomotive focal length predictions agree quite well with the theoretical predictions, but the
behavior of the light in and after the first focus can differ markedly from the predictions. Gaussian
beams undergoing thermal filamentation agree with theoretical predictions only at lower intensities; at
higher intensities the focal length increases rather than decreases, and the peak intensities decrease
rather than increase. Both of these effects are due to the stabilization effects of the nonlinear
temperature profile. In both the ponderomotive and thermal filamentation cases, peak intensities
found in the simulations fall far short of their predicted values.

There are significant discrepancies between the perturbation theory and the simulations for the
generic and RPS smoothed laser beams: the fastest-growing mode is often different than predicted,
and the growth rates for most longer wavelength unstable modes are lower than predicted. The
supposedly stable higher wavenumber modes grow, apparently due to nonlinear mode-mode coupling.
In spite of these discrepancies, comparisons of the results to the theoretical focal length scaling laws
show rough agreement. Comparisons to the peak intensity scaling laws are again poor. The RPS
optical control technique is able to suppress filamentation under some plasma conditions, but requires
relatively fast focusing optics (SF/5).

The ISI smoothing technique is first simulated in homogenous, nonabsorbing plasmas. Time
averages on the order of a hundred coherence times show relatively smooth laser illumination, but
there can be a simultaneous increase in the proportion of laser energy at the higher intensities. This
has important implications for nonlinear interactions that respond to the light on times of order of
the laser coherence time (~psec). Scaling studies of the ISI focal lengths show agreement between
theory and calculations. In contrast, the maximum intensity levels in the plasma are found to be
relatively insensitive to the interaction strength, in disagreement with our theoretical predictions.

Simulations using near-term laboratory plasmas demonstrate that filamentation tends to be
much stronger at longer laser wavelengths (i.e., A_=1.06gm and 0.53gm). Ponderomotive
filamentation is dominant at 1.084m, and is exa.cerba.teg by the relatively small anderdense-plasma
absorption. Generic beams of high quality and RPS-smoothed beams both filament rapidly
{(producing filament intensities ~25.30 times the average). ISI also shows some evidence of enhanced
energy at higher intensity in the 1.064m laser-plasma. The strong filamentation tendency exhibited
by the 1.08m wavelength interaction (also at 0.53pm) underscores the importance of filamentation in
near-term laser-plasma experiments: the laser-plasma interactions at these longer laser wavelengths are
probably dominated by filamentation effects.



In reactor-sized plasmas at shorter laser wavelengths ()\°=0.25/Jm), the increased absorption
reduces filamentation for all types of laser beams. When filamentation occurs, maximum intensities
are ~10-15 times the average incident intensity. RPS smoothed beams do not reduce these maximum
intensity levels. However, the ISI smoothing techmique or very clean beam profiles (armss’l) can
eliminate filamentation in short wavelength laser plasmas.
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Appendix

The quasi-optic equation (2.3) can be solved using the paraxial approximation, which consists
of expanding the nonlinear dielectric constant in the transverse variable and keeping only the first
order, quadratic terms”. It is a well known that a beam that initially has a Gaussian intensity
profile and a constant or quadratically varying phase front remains Gaussian as it propagates through
a quadratically varying dielectric constant. We thus consider 2 Gaussian filament for consistency.
The electric field of the filament is written:

Y1) = 9, () [;i?—;)]m

exp(-x*/2a(M i (P, (M+4, (XD} (A1)
where a(%) is the 1/e radius of the filament at distance %, a_ is the initial filament radius, N is the
number of transverse dimensions, and § and @, are real. As written, the field conserves energy as
a(n) varies. Inserting (A.1) in equation (22.3), using the paraxial approximation €(7,x)2 €{(7n,x=0)+
(3[e(n,x=0)]/3[x ])x2 (assume that 3€/3x” is real), separating real and imaginary parts, and equating
like powers of x, we find the following equation for the filament radius a(7):

2 4
T L i R0 (a.2)
dp” - a(m)

A.l1 Ponderomotive Filamentation

For ponderomotive filamentation, ae(ﬂ,x)/ax2=a(ne(ﬂ,x)/nc)/axz‘i -neo/nc'ypa.(r])'z(a.o/a(r]))N,
where 7p is evaluated at x=0. This leads to the equation:

N
2 dzam _ 1 2 (n/nc)7gao : '
4r 5 = 3 - 47 1N (A.3)
dn a(n) . a(m)

The filamentation threshold is determined when da(7)/d7=0 and dza(ﬂ,z=0)/dr]2=0 at 7=0. The
threshold filament radius is:

-1/2
Th , 1 [;_1_ )
a_p 2 P nc']p (A.4)
This radius is independent of the dimension N, and agrees with table I if we define the effective
perturbation wavelength of the Gaussian distribution to be XlP(Gaussian) = TV2 a = 4.4a
(assuming 2n/n 7 << N).

The u7lutions are dependent upon N, and are straightforward when n/nc is independent of 1,

and f1=z/€}/%, For N=2, the solution of (A.3) is:
2 2
(1-47"(n/n )7.2>) 2
2y - 2 LIORID) (o s
4x7e o
o
This predicts that for filaments above threshold, the radius will go to zero at:
1/2
-1/2 €' "a
oy 1/2 2 [ 2 2 ] w o ‘o
1ﬂ, (N=2)= 2150 a_ 4x nc7pa'o 1 = ————[n 172 (A.6)
=17
n_’p
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The collapse of the filament to zero radius at g=l., occurs in this model because the dielectric
constant (previous to (A.3)) is approximated as directly proportional to the intensity. The induced €
causes refractive forces that are always larger than diffractive forces, and the filament collapses to
zero radius and infinite peak intensity. In a real plasma, the induced € saturates at €=1, and
diffraction eventually overtakes the filamentation forces when the radius is of the order of A .
Although the solution is technically invalid at s=l_.,, the collapse is rapid enough that the solution 1s
valid close to lﬂ,, and 1, is a good approximation to the focal distance in the real case. This
value is in agreement with table I if we use the previous definition of the Gaussian wavelength
(A lP=ﬂ/§&o)’ and define the Gaussian growth wavelength XgP=2ﬂ£P.
When N=1 the solution a(z) to (A.3) is:

1/2 -1[_Ca(z) +
(Ca(5)2+2ﬁa(2)-1] = i - ——E——-[ T + sin 1{ zc(+)p2)€/2l] A.7

- 21&1/2 - 2 - 4.2
where: z Z e s C= (1—2ﬁab)/a°; and f = 4rx (n/nc)7pa°.

s =1 is equivalent to the threshold condition given by (A.4). This displays a focal length given
by?

4.4 1/2 1/2
8r a.o(n/nc)'ypeo . 12 €

A.8
872 /) 7p3§ _1)3/2 1/2 (A.8)

1,,(N=1) = .
¥ 83 1)
] Cc

The approximation on the RHS of (A.8) is valid for filaments far over threshold: 81> (n/n )7 al>>1
In this limit, lop(N=1)=(7/v8)lp(N=2)% 1.11;p(N=2), and matches table I if we define
X$P=4\/-'ilfp(N=1 —5.7lfP(N=1). Like the perturbation analysis in section I, this model predicts very
similar focal lengths for N=1 and N=2.

The minimum filament radius, attained at er, is:

a_ . .
min

a, = [ 8r” §c7pao -1 ]-1

Thus, the maximum filament intensity (MAX{I} /I = a.o/amin) exhibits a linear dependence on the
incident filament intensity.

A.2 Thermal Filamentation
For the thermal conduction dominated 1lamex§tation mechanism, ﬁhe dielectric constant
expansion gives ae(ﬂ,x)/ax2= O(n, (7.x)/n )/0x"= -27 (n/n_)Tpq(a,/a(7))". Substituting this in

(A.2) yields:

2 .
a2 o L gt asn Yyl 2t (A.9)
dn a(7)
The filamentation threshold is then:
-1/4
Th y 1 (gn
20T 2 T [SnC7T2] (4.10)



This agrees with table I if we define the effective perturbation wavelength as )\ -—‘K\/2a. ™ the same
relation as we have previously found. The solution a(n,7 2) for N=1 can be ’{ound by mtegatmg
eqn (A.9) l:wxcc First it u helpful to define the transt‘orm variables u = (81 (n/n )7T2a. )

and y = (81’ (/2 )79, 23 3/21\/— Then (A.9) can be expressed in a canonical form:

2
d uéﬂ - 1 3 - 1 (A.ll)
dy u(y)
Integrating this twice, we find:
. = I“(Y) u du 7
u [2(u -u) (u-u,) (u-u )]
where: |
- 1/3
U = (87 7T2a' )
1/2
1+[1-i-8ui]
1 = — ,
e 4u2
o
and:
1/2
1—[1+8u2]
u =
- 4=u2
o

This has the solution:

ISV
;- 21/2u_(uo_u+)-1/2 F[[uo ] o u+]

uo—u+ uo—u_
-u 1/2 u_-u
+ [2(u v )]1/2 [[u - ] ; u°_uj] (A.12)

where F(g4;p) and E(§;p) are elliptic integrals of the first and second kind, defined as:>7

RICHE Jéx [(1-px?y (1—x2)]'1/2
E($;p) = jéx [apdyra-d)] "
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In the limit u, >>1 (ie., "q_>>1)’ eqn {A.12) can )e simplified; using the limiting forms E(¢;1)=9¢,
F (¢,1)-—1n(sec[sm ¢]+tan[sm ¢]), and u,=*(2u )"/" we find:

. 1172 1/2
y=- }1— ln[[u(;)] (1+1- %{f)] ) o+ 2 w12 (a3

The focu7 occurs where u{y)=u_, (this is the minimum radius achieved by the filament}, at
yr(2u Transforming back, we find the focal length:

e 1/2
=2t |9
lip =7 [(n/nc)‘],rz] (A.14)

This is again independent of the filament radius, and agrees with the sinusoidal perturba.tuon result

(table I) if we define the Gaussian growth wavelength as A T—‘/zﬂfT The maximum intensity,
wluch occurs at the focus, is:

12
=X _ 2.3 u3/2 = 47 [ 7”) / (A.15)
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Table 1

Steady State Filamentation Parameters

Ponderomotive: Thermal:
A. i{h; Threshold Perturbation Wavenumber:
s 2 -1 iy 2 1/2
Th 1 - Th n
{3} < {2 n " Te } {<a) < {22 7o)
7 ° c
o ‘p
B. 1; ; Spatial Growth Rate:
iy 1 '2{ n ["—2 1} }1/2 1 { n [ if ] T4
k y=— 2= 1 1k° -5 -1 k=== {27 Tnoll- |- k
gP o[ 1 n.'p 1 Neo gT 21?0 n T2 Neo 1
- 1/2 - -
k :k{‘“"l-l}/ = (g2 ‘k2}1/2
gP 1 28 1 p gT 2e n Tro™ %)
c. irfa.x; Fastest Growing Perturbation Wavenumber:
{ima.x} 1 { 1 _1_}‘1 fmax _
1P ~ 2 \2n/n 7 Ne 1T ~
clp o
D. i:a.x; Fastest Spatial Growth Rate:
- -1/2 - 1/2
max_ 1 n 2n max_ f 11
kep = 2n 7p{€o Nn 7p gl ~ {26 n 7T2}
c c oc
F2xe Lz Tp
2 n, Eo
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Table IT

ISI Filamentation Parameters

Ponderomotive: Thermal:
A. ifh; Threshold Perturbation Wavenumber:
- 2/3 -
Th n 1/2 ' Th n 1/2
kp < (2 a Tp'c ] kpp < [2nc7T2Tc )

B. kg; Spatial Growth Rate:

2/7

- - - /2 - - -
kgp® ;%g;kf{2%c7pri/2 kI3/2‘ 1} o kop ® ;%E;kf{2%c7T2Ti/2 k17/2
0. kT™*; Fastest Growing Perturbation Wavenumber:
e G2y s )
D. igax; Fastest Spatial Growth Rate:
A
J?o' nc p C J-E—o nc c

These results assume that il<<1' and (n/nc){']p,'],rz}‘r;‘:'/2 << 1.
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Fig. 1 Focusing of a Gaussian filament
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dotted qme is the enalytic result [from
appendix]|, solid line is the simulation result.
{b) Contour and isometric plots of I{x,z}
from the simulation.
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effects for fast o;’)tics. Other parameters are
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the integrated energy distribution function,
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<MAX{MAX{I} } >; (ii.) (filled triangle):
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and (open triangle):

position of largest peak MAX{<MAX{I}x>}z;
(iii.) (filled box): position of first peak

MAX {MAX{<I>}

and (box): position of

}
largest peak MAXMAX{<I>}X}Z; (iv.) the
dotted line shows the expected values using

the results in Table IL
with n/n__. =0.5, F/20
wide simulation mesh.
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Fig. 18 ISI Thermal filamentation in a
homogenous plasma: contour and isometrie
plots of intensity distributions. (a) and (b):
instantaneous intensities at 1257 and 2507 ;
(¢) time-averaged intensity vs. x,5 over 2507 .
7’1‘/2:2"10 , T,=0.53, 7p.,=3.8%10,

n,/n.;4=0.5, and F/20 optics.
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Fig. 19 ISI Thermal filamentation in a
homogeneous plasma: contour and isometric
plots of the instantaneous (a) temperature
and (b) density distributions in the plasma at
2507’c, from the simulation shown in fig. 18.
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Fig. 20 ISI Thermal filamentation in a
homogeneous plasma: (a) <MAX({I} >/I
(solid line) and MAX{<I>} /I (dotted line)
vs. propagation distance, z/xo. (b) Contour
plot of the integrated energy distribution
function IEDF(I/I ) (the fraction of energy
greater than a given intensity) as a function
of the propagation distance, z/)o. From the
simulation shown in Fig. 18.
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I, =3x10? W/cm2 F/20 optics and a DT
pellet
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generic profile lasers for laser wavelengths of
{a) 1.068pm; (b) 0.588m, and (c} 0.25pm
(using density, temperature profiles shown in
fig. 22), showing MAX{I}x vs. 0 of the
incident beam. The open circles mark the
incident values of MAX{I(::O)}X; the solid
circles are the absolute maximum values of
the intensities reached in the plasmas,
MAX({I} g Also shown (square symbols) are
the resuﬁ’a achieved using the RPS method
with F/5 optics (the solid square denotes the
value of MAX{I}x , the open square the
value of MAX{I(z-’-:O)}x).
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Fig. 24 ISI filamentation at 1.08fm laser
wavelength in laboratory plasma fig. 2a.

{(a) Instantaneous intensity distribution at
2507_; (b) time averaged intensity maximuma
<MA"X{1}X> (solid line) and MAX{<I>}
(dotted line); (¢} contour plot of the
integrated energy distribution function
(fraction of energy greater than a given
intensity I/1 ), IEDF(I/I ;n/n ); and (d) time
averaged distribution <I(§<z
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Fig. 25 ISI filamentation at 0.534m laser
wavelength in laboratory plasma fig. 22b.

(a) Instantaneous intensity diatribution at
2507 ; (b) time averaged intensity maximums
<MAX{I},> (solid line) and MAX(<I>}_
(dotted line); {c) contour plot of the
‘integrated energy distribution function
{fraction of energy greater than a given

intensity I/I ), IEDF(I/I ,n/n); and (d) time

.averaged distribution <I(x,z)>.
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Fig. 28 ISI filamentation at 0.254m laser
wavelength in laboratory plasma fig. 22c.

{(a) Instantaneous intensity distribution at
2507 ; (b) time averaged intensity maximums’
<MA°X{I}X> (solid line) and MAX{<I>}
(dotted line), and relative pesk-to-valley
uniformity (MAX{<I>}-

MIN{<I>}}/<I,. g(:)) {dashed line); .

(¢} comtour ploc V8t the integrated energy
distribution function (fraction of energy
greater than a given intensity I/I )
IEDF(I/I ,n/n ); and (d) time averaged
distribution <f (x,5)>.
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