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ABSOLUTELY UNIFORM ILLUMINATION
OF LASER FUSION PELLETS

For direct driven laser fusion to be successful, the spherical fuel pellet

1must be illuminated to a high degree of uniformity. . Various symmetric beam-

target configurations have been proposed to achieve this uniformity. Most of

these designs are based on laser beams that are targeted on the spherical pellet

from the faces or vertices of the five Platonic solids (the tetrahedron,, cube,

octahedron, dodecahedronr and icosahedron) .2-5 Given such symmetric targeting

of the laser

of the laser

scalelength,

that proves

beams, the level of uniformity still depends on the

beams (spot size on target, intensity profile) and

absorption, and refraction). A brief derivation is

that absolutely uniform illumination from

characteristics

pellet (plasma

introduced here

multiple beam

configurations is possible in certain cases. These cases inclucle configurations

based on four of the five Platonic solids (the tetrahedron is excepted), plus an

additional class of configurations that are less symmetric.

Assume, for the moment, that refractive effects are ignorable. This is

best satisfied when the plasma scalelength is small in comparison to the pellet

radius and the plasma is highly absorbing, a situation that accurately describes

shorter wavelength experiments. The absorbed energy density on the pellet

surface resulting from a single laser beam incident along the positive z axis

is:

E(gr$) = I[x(8,$ ),y(8,1$ )]A(6)COS(e ) (1)

where A(e) is the fraction of incident energy absorbed at polar angle 0. The

beam is implicitly assumed to result from large F number optics, so that the
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beam intensity profile, I, remains unchanged along the axis z in the area of the

pellet. The total eiiergy density is the superposition of many beams centered at

the points (fl,$)on the pellet surface, and can be written as

E(e,$) = ; 1, (~4L)A(Y4)cosY; (2)
LAJ.— . .

Yi is the angle between the i-th beam axis and the Pint (6,$), and I(x,A)

the beam intensity profile of the i-th beam in the plane orthogonal

propagation axis.

Assume that all of the beams are identical, symmetric about their

propagation (so that Ii(~iL) = I(Yi)), and that each

that is

sphere,

and the

antiparallel to it and aimed at the mint

(lT-9i,lr+!j i). Then for the special case that

pellet absorption function combine so lihat:

I(Yi)A(Yi) = IoCOSyi

beam is opposed by

directly opposite

the beam intensity

to

is

its

axis of

another

on the

profile

(3)

all angular dependence can be removed from the energy density on the pellet

surface.

TO show thiS, insert (3) in (2) and use the identity COSYi = cos6cosei +

sinf3sineicos(@i-$). Rearranging the results, one finds:

E(er@)/Io = (~ Jk COS2ek)COS2e

E
+ ( sin2e Zsin2$jk)sin

k]
2esin2$

+ ( sin2ek ~cos2$ ).sin2ec0s2$
i jk

+ 2(~c05t3ksinek $c0s$jk)c0sesinecos$
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+ 2(~cos9ksine Zsin$jk)cos8 sin9sin$k]

i
+ 2( sin29 ZcoS$jksin$jk)sin2f3cos$sin$k] (4)

k, jk) have been written so that a group of azimuthalThe targeting angles (e $

angles {$ ‘=1;1 t.. **7 Jk} is associated with each polar angle ek,k=l ,...,K. The
jk

total number of beams is thus N = 2~Jk.

The first requirement in achieving

terms of (4) are zero. This will occur

~sin+ = ~cos$jk = $Cos$lk ‘in$jkjk

energy uniformity is that the last three

when

= o (5)

for each k. This is satisfied if the set of angles, {$jk}, are symmetric in

reflections about the x and y axes. It is also satisfied when {$. } are equally
]k

distributed about 2T:

{$jk} = ~l/Jk j=l, .....Jk

This includes the case of cdd Jk (see appendix A).

Next, the angles {$jk} are further constrained by the condition:

(6)

(7)

The {$jk} given by (6) satisfy this condition if Jk > 2 (see appendix B). With

this requirement satisfied, the energy density is independent of azimuthal angle

and is given by:

E(e,@)/I 2e 2028 + l/2(~Jksin k)sin 20 (8)= (;Jkcos k)COS
o
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When the coefficients of the COS213 and sin28 terms are equal, the energy density

becomes independent of polar angle also. This requirement reduces to:

~Jk(cos26
k

- 1/3) = o

If conditions (9), (7), and (5) hold, then

E(6,$)/I = N/6
o

(9)

(lo)

and the energy density on the pellet has no angular dependence.

The simplest configuration for which the conditions (5), (7), and (9) can

be satisfied is K=l and J=3: {~} = O, 120, 240°, and e = 54.736°. These angles

are in the direction of the faces of a cube, which is the simplest of Platonic

solids with opposing beam symmetry. The other higher order Platonic solids also

satisfy the uniformity constraints, as well as an infinite number of other less

symmetrical configurations.

Omega .system3 (aiming from

belongs to this uniformity

For example, ‘theUniversity of Rochester’s 24 beam

the vertices of a small regular rhombicuboctahedron)

class . Lawrence Livermore Laboratory’s NOVA laser

system, 5 consisting of 5 sets of opposing beams ({~} = O, 72, 144, 216, 288°,

and e = 50°) is almost a member of this class (it would belong if e =

54.7360). In general, given K > 1 and Jk, there exists an infinite set of’

configurations that satisfy the requirements.

It i.s possible to extend these results to more realistic situations.

Refraction considerations give rise to more general and complex conditions than

given by (1) through (3); the energy density resulting from a single laser beam

must satisfy:

E(6,~) = A(f3)~df3’1(e’)f(e’,6)cose” = Iocos2e

4
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where f(e’,e) is the transmitted fraction of a ray originally incident at

angle O ‘ and refracted to the angle 6. As a practical example, condition (11)

can be satisfied by a totally uniform beam incident upon

electron density distribution. 4

In general, there is little control possible over

an inverse square

the absorption or

refraction of the light once it arrives on the pellet. Instead, some tailoring

of the absorbed energy may pssibly be accomplished through control of the laser

intensity profile, perhaps by using apodized apertures or other spatial

filtering methods.

The question

considered. For

of inter-beam interference effects should also be

coherent laser beams separated by a minimum angle ~, the

spatial intensity fluctuations created by interference patterns have a maximum

spatial wavelength, A, given by i = ~olsin~ - ~. where A is the laser
o

wavelength, and sin+ is of order unity for systems.typical ‘ 6 Any

nonuniform ties in the deposited energy produced by this highly modulated

intensity distribution are easily smoothed by thermal conduction In ‘&e region

separating the absorption and ablation

Interference effects are unimportant

including induced incoherent laser beams’

regions of the laser fusion pellet.’

for incoherent illumination sources,

as well as ion or electron beams.

In conclusion, it has been shown

illuminate a sphere in an absolutely

here that it is theoretically possible to

uniform manner. The conditions for doing

so are: 1) that the energy density resulting from any one laser beam is given

by (11); 2) that to each beam belongs an opposing beam situated at ‘&e opposite

point on the sphere; and 3) that the beam targeting angles satisfy the

conditions (5), (7), and (9). These three constraints are satisfied for an
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infinite set of configurations, including the cube and higher order Platonic

solids. These configurations can be used to achieve the high degre@ of energy

deposition uniformity required for proper implosion of laser fusion fuel

pellets.

The author would like to thank Dr. S. Eodner for valuable discussions and

suggestions. This work was done while the author was an NRC-NFL research

associate, and was sup~rted by the U.S. Department of Energy and Office of

Naval Research.
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Appendix A

If {$j} is symmetric about reflections in ‘the x and y axis, then for

each $j, there exists a $’, such that $’.= -$!, and another such that $ ! = IT-$,.
3 J J 1 1

Then clearly ~sin$ . = O, $COS$ , = O, and ~cos$jsin$ . = O. The {$j} given by
1 3 3

(6) for even J is obviously a special case of this. A separate situation exists

when J is cold. In this case, $sin$ = O and Zjsin$jcos$, = O, since the set is
j 3

symmetric in reflection about the x axis. In addition,

$’cos(2rrj/J)= l/2{~[cos(2mj/J) + cos(2rr[j-1]/J)]} (A-1)

= cos(7r/J)~cos(~[j-l/2]J)

The set of angles in the sum on the right side is the reflection of the original

set about the y axis. But these sets are antisymmetric in reflection about the

y axis:

~cos(2rrj/J) = -$cos(2mj/J +m) = -$cos(2n[j-l/2]/J) (A-2)

Thus , if cos(IT/J) # 1 (or J * 1), we conclude that ~cos(2nj/J) = O, and

therefore (6) satisfies condition (5) for odd and even J.
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Appendix B

TO show that (6) satisfies (7), note “that

~cos2(2nj/J) = l/2(J + ~cos(4rj/J))

If J is even (J=2r, where r is integer) , then

~cos2(21rj/J) = l/2(J +$c0s(2nj/r)) - J/2

according to the results in Appendix A.

If J is odd, then

$cos2(2rrj/J) +~cos2(m-2Trj/J) = J

by (B-2). But

$cos2(2nj/J) = $cos2(7r-27rj/J)

and therefore

$cos2(2nj/J) = J/2

(B-1 )

(B-2)

(B-3)

(B-4)

( B-.5)

Thus, {$j} given by(6) satisfied condition (7) for even and odd J.
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