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In a recent article [J. W. Bates, “Instability of isolated planar shock waves,” Phys. Fluids 19, 094102
(2007)], we derived linear instability criteria for an isolated, planar, two-dimensional shock wave
propagating through an inviscid fluid with an arbitrary equation of state. The basis for this analysis
was a novel solution for the time-dependent Fourier amplitude of a single-mode perturbation on the
front, which was expressed in the form of a Volterra equation. In the comment by Tumin [“Comment
on ‘Instability of isolated planar shock waves’,” Phys. Fluids 20, 029101 (2008)], the author
demonstrated the consistency of our results with those of Erpenbeck, whose mathematical approach
avoided the derivation of an integral equation in the time domain, but required a complicated,
inverse Laplace-transform operation to ascertain the temporal evolution of disturbances at the
shock’s surface. Here, we emphasize that such information is obtained more readily from a direct
solution of the aforementioned Volterra equation using modern numerical techniques.

[DOL: 10.1063/1.2841625]

Recently,] we presented an alternate derivation of the
well-known instability criteria for an isolated, planar, two-
dimensional shock wave propagating through an inviscid
fluid characterized by an arbitrary equation of state. The ba-
sis for this analysis was a novel solution in the linear ap-
proximation for the time-dependent Fourier amplitude of a
single-mode perturbation on the front, which was expressed
in the form of a Volterra equation of the second kind, and
derived in a previous study.2 In the comment by Tumin,” it
was shown that our findings are consistent with those of
Erpenbeck,4 who also investigated the shock-wave instability
problem, but whose differing mathematical technique side-
stepped the formulation of a Volterra equation in the time
domain. We would like to thank Tumin for his efforts in
unifying these two disparate methodologies.

However, we wish to underscore an important aspect of
the approach involving a Volterra equation. Using modern
computational algorithms,i6 such an equation allows a
simple and direct means of determining the evolution of dis-
turbances at the shock’s surface. For example, by numeri-
cally solving Eq. (9) of Ref. 1 for the normalized amplitude
g(7), one can demonstrate explicitly that linear perturbations
on stable shock fronts oscillate, and then decay asymptoti-
cally as 7~¥2, where 7 is a dimensionless time. This point is
illustrated in Fig. 1, which shows the numerically computed
solution of the shock-ripple amplitude for case “e” in Table I
of Ref. 1, as well as the value of the decay envelope as a
function of 7, plotted both linearly, and on a double-
logarithmic scale. From the figure, it is clear that the data in
logarithmic space approach a slope of —3/2 at late time. This
implies that as 7— o0, the temporal dependence of the func-
tion g(7)/g(0) is approximately 7732 (times a sinusoidal
function of 7). Erpenbeck’s method, by contrast, requires
that a complicated, inverse Laplace-transform operation be
performed to ascertain the same asymptotic behavior.
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For shock conditions that satisfy the D’yakov-Kontovich
criteria,7’8 one can also show via a numerical solution of the
Volterra equation in Eq. (9) of Ref. 1 that perturbations re-
main stationary. Two examples depicting this special class of
shock instabilities were already presented in Fig. 4 of the
aforementioned reference, and are labeled “c” and “d” in that
plot. Upon inspection of those curves, it is clear that in each
case the envelope of oscillations as a function of 7 has zero
slope asymptotically, which indicates that the perturbations
do not evanesce over time (i.e., they are stationary). Further-
more, for absolutely unstable shock fronts — such as curves
“a” and “b” in the same figure — the growth rates can be
easily computed and shown to have the same values as the
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FIG. 1. Plot of the amplitude decay envelope of a linear sinusoidal pertur-
bation on a stable shock front obtained by numerically solving the Volterra
equation in Eq. (9) of Ref. 1. This figure also shows the value of the enve-
lope as a function of time plotted on a double-logarithmic scale. The fact
that the logarithmic data approach asymptotically a slope of —3/2 implies
that g(7)/g(0) ~ 732 (times a sinusoidal function of 7) as 7— 0.

20, 029102-1


http://dx.doi.org/10.1063/1.2841625
http://dx.doi.org/10.1063/1.2841625
http://dx.doi.org/10.1063/1.2841625
http://dx.doi.org/10.1063/1.2841625
http://dx.doi.org/10.1063/1.2841625
http://dx.doi.org/10.1063/1.2841625

029102-2 J. W. Bates

positive real poles listed in Table I (6.216 and 0.059, respec-
tively), in accordance with the linear theory.

In summary, the response of isolated planar shocks to
linear perturbations can be investigated in one of several dif-
ferent ways, including a technique based on Riemann invari-
ants due to Roberts,"”’ a normal-mode analysis developed
by D’yakov7 and Kontorovich,® and another adopted by
Erpenbeck.4 Only the first and last methods, though, provide
a theoretical framework for addressing the question of how
stable shocks ultimately regain their planarity. Furthermore,
although the consistency of these two approaches has been
demonstrated recently by Tumin,” the existence of a time-
dependent Volterra equation for the perturbation amplitude in
the former methodology constitutes a significant advantage
over the latter. By solving this equation numerically, the tem-
poral evolution of small disturbances on isolated shocks
propagating through fluids with arbitrary equations of state
can be readily determined. In Erpenbeck’s approach, the
same information can be obtained only through a compli-
cated, inverse Laplace-transform operation.
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