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Abstract 

Perturbations that seed Rayleigh-Taylor (RT) instability in laser-driven targets 

form during the early-time period. This time includes a shock wave transit from the front 

to the rear surface of the target, and a rarefaction wave transit in the opposite direction. 

During this time interval, areal mass perturbations caused by all sources of non-

uniformity (laser imprint, surface ripple) are expected to oscillate. The first direct 

experimental observations of the areal mass oscillations due to ablative Richtmyer-

Meshkov (RM) instability and feedout followed by the RT growth of areal mass 

modulation are discussed. The experiments were made with 40 to 99 µm thick planar 

plastic targets rippled either on the front or on the rear with a sine wave ripple with either 
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30 or 45 µm wavelength and with 0.5, 1 or 1.5 µm amplitude. Targets were irradiated 

with 4 ns long Nike KrF laser pulses at ~50 TW/cm2. The oscillations were observed with 

our novel diagnostic technique, a monochromatic x-ray imager coupled to a streak 

camera. For the ablative RM instability (front side ripple), the mass modulation 

amplitude was typically observed to grow, reach a peak, and then decrease, after which 

the exponential RT growth started.  In some cases, one phase reversal due to the ablative 

RM instability was observed.  For the feedout geometry (rear side ripple), in all cases two 

phase reversals were observed: a distinct half-oscillation was followed by the onset of the 

RT growth, resulting in a second phase reversal. 

PACS numbers: 52.57.Fg, 52.70.La, 47.20.-k 
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I. Introduction 

 The success of the laser fusion program in general,1,2 and of its flagship NIF 

project in particular (including its indirect-3 and direct-drive4 ignition options), is 

critically dependent on our ability to simulate target performance. We have to rely upon 

simulations to predict whether or not a target irradiated on a large-scale facility will 

actually ignite. Thus, while a large-scale facility is being constructed,5 smaller facilities 

are used to keep testing and improving the reliability of our codes.   In particular, they 

should be fully validated and benchmarked vs. experiment in a single-mode regime. 

Target distortion due to the Rayleigh-Taylor (RT) instability has long been 

identified as a critical issue of the laser fusion program.  Growth rates of the RT 

instability have been measured in numerous experiments starting from the mid-1980s 

(see Refs. 6-10 and references therein).  However, little experimental data is available on 

the important processes that form the initial seeds for the RT perturbation modes. All 

sources of non-uniformity - laser imprint and  beam imbalance, roughness of the outer 

and inner surfaces of the target– contribute to the RT seeding process. Seeding takes 

place during the so-called “early-time” period that includes a shock wave transit from the 

front to the rear surface of the target, and a rarefaction wave transit in the opposite 

direction. If the driving laser intensity is nearly constant, then at the early time the target 

is not accelerated, and there is no exponential RT growth at the ablation front. 

Nevertheless, as noted in Ref. 11 (see also the discussion in Refs. 12-15), one might 

expect some linear in time, Richtmyer-Meshkov (RM)-like13 growth to proceed as long 

as there is no acceleration and the perturbation amplitudes are small. Indeed, at the very 

beginning of the “early-time” phase a linear growth takes place. However, this is not an 
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unlimited growth characteristic of the classical RM instability, but rather an early phase 

of an oscillatory process. Simulations and theory indicate that during this early time the 

areal mass perturbations oscillate rather than grow.12-17 The physical mechanisms driving 

the oscillations are different, depending on whether the perturbations are initially at the 

front surface of the target (laser imprint, front surface roughness) or at its rear surface 

(feedout). The oscillations are caused in the former case by the “rocket effect” due to 

mass ablation,15, 19 and in the latter case by a lateral mass redistribution in a rippled 

rarefaction wave.18 The subsequent RT growth for each mode starts at the amplitude and 

phase determined by this oscillatory process. To ensure that not only the growth rates, but 

also the actual amplitudes of the perturbation modes are simulated correctly, we need to 

fully understand and be able to observe and model the early-time oscillations.  

These mass oscillations have been observed for the first time in the experiments 

carried out on the Nike KrF laser facility at the Naval Research Laboratory in 2000-2001. 

To make the observations possible, we developed a novel diagnostic technique by 

coupling a streak camera to the Nike monochromatic high-resolution x-ray imaging 

system.20 Our first observations of the oscillations due to the ablative RM instability and 

feedout have recently been reported in Refs. 21 and 22, respectively. 

This article describes in detail our experimental data on the early-time areal mass 

oscillations due to both the ablative RM instability and feedout.   Section II outlines the 

theory and presents the requirements for the laser driver and for the diagnostic system 

that must be satisfied to make the observation of the oscillations possible.  Section III 

describes our diagnostics and the experimental setup and presents the experimental data 

and some of the simulation results.  Section IV concludes with a discussion.  



 5

II. Theory 

When the irradiated front surface of the target is rippled, the oscillatory behavior 

during the shock-rarefaction transit time is caused by the so-called ablative Richtmyer-

Meshkov instability. These oscillations have been first predicted in our simulations,12 and 

then explained by the theory of Ref. 15 (where the term “ablative RM instability” was 

introduced), and later confirmed by many other simulations,16, 17 but only very recently 

have been observed experimentally for the first time.21  The frequency of these decaying 

oscillations of ablation front is consistent with the recently established expression19, 23 for 

the growth rate aΓ  of the ablative RT instability at high Froude number (low 

acceleration): 
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Here g is the acceleration, 1<<Dr  is the effective blowoff-plasma-to-ablation-front 

density ratio, sa mv ρ/&=  is the ablation velocity ( m& is the mass ablation rate, sρ  is the 

shock-compressed target density), and Dr  is estimated for a given perturbation 

wavelength k/2πλ =  by the formulas given in Ref. 23. The main difference between (1) 

and all the versions of the Bodner-Takabe formula24 (see also references in Refs. 1, 2, 23) 

is the presence of the negative term under the square root. The so-called “rocket effect” 

described by this term emerges because, as noted in Ref. 24, the ablation front is an 

isotherm. When it is perturbed, and a part of it gets closer to the hot laser absorption 

zone, the temperature at the ablation front does not increase, but the temperature gradient 

in its vicinity, T∇ , does. This in turn increases the local heat flux to the ablation front, 

T∇−κ , and hence the rate of mass ablation from it, thereby increasing the ablative 
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pressure and pushing this part of the ablation front away from the laser absorption zone. 

The physics of this “rocket effect” is explained in detail in Refs. 15, 17, 19.  This “rocket 

effect” rather than the mass flow through the ablation front determines the cut-off 

wavelength of ablative RT instability at high Froude numbers. Formula (1) giving the rate 

of exponential growth19, 23 is formally applicable even below the cut-off wavelength, i. e. 

when the acceleration is low, or the wavelength is short, and such a growth does not take 

place.15, 16 In the latter case, the imaginary part represents the frequency of decaying 

oscillations. If we substitute the value of 0=g , appropriate for the shock-rarefaction 

transit time, into (1), then the contribution of the square root term is purely imaginary, 

aa Ω±=ΓIm , where 

2/1/ Daa rkv≅Ω                          (2) 

is the estimated oscillation frequency.15  

 Formulas (1)-(2) refer to the oscillations of a rippled ablation front. These are not 

directly measured by our face-on diagnostics. The observed total modulation of areal 

mass includes additionally the two distinct oscillatory contributions, which we combine 

below into a single term, shockmδ : the rippled shock front and the mass non-uniformity 

due to the entropy and sonic perturbations in the shocked plasma between the ablation 

front and the shock front,  

 shocka
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where the subscripts “a” and “sf” refer to the ablation front and the shock front, 

respectively. The amδ  component is a perturbation localized near the accelerated surface, 

which provides the initial conditions for the subsequent RT growth once the target starts 
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to accelerate. On the contrary, the shockmδ  component is partly localized near the stable 

shock front, partly spread over the plasma volume between the shock and ablation fronts, 

and does not directly participate in triggering the RT growth. 

In Figure 1(a), these contributions are shown separately, as given by the analytical 

small-amplitude theory,13 where at the ablation front the Sanz-Piriz boundary 

conditions19 are satisfied. The figure is plotted for the parameters characteristic of a 

plastic target ( 07.10 =ρ  g/cm3) irradiated with a KrF laser ( 248.0=Lλ  µm) at  ~50 

TW/cm2: 510=av  cm/s, constant shock velocity 6104×=D cm/s. Here, the perturbation 

wavelength is 30=λ  µm, the corresponding value of 09.0=Dr , and the ideal gas 

equation of state with 3/5=γ  is assumed. The areal mass modulation amplitudes δm are 

expressed in units of 000 am ρδ = , where 0ρ is the initial density, 0a is the initial ripple 

amplitude. Figure 1(a) demonstrates that the contribution to the total mass variation due 

to the rippled ablation front, amδ , becomes the dominant one after a relatively short 

transitional period, ~0.8 ns. During this period, the observed growth of totalmδ  is caused 

by comparable contributions of the increasing ablation front term, amδ , and the 

decreasing shock term, shockmδ , which has a different sign. Later, the contribution of the 

shock term reduces to small, slowly decaying sonic oscillations. For the above 

conditions, Eq. (2) estimates the half-period of the ablative RM oscillations as 4.5 ns, in 

agreement with Fig. 1(a), where the oscillation cycle starts somewhere in the middle. The 

frequency of the shock-induced sonic oscillations is 
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Fig. 1. Time history of areal mass modulation amplitude predicted by analytical small-
amplitude theory for a plastic target rippled with 30=λ  µm on (a) the front side and (b) 
on the rear side. The origin of time 0=t  corresponds to the instant when (a) a shock 
wave propagating at constant velocity 6104×=D  cm/s is launched at the front side; and 
(b) when such a shock wave breaks out at the rear side. (a) The total mass modulation 

totalmδ  and contributions to it due to the perturbed ablation front amδ  and to the rippled 
shock front and post-shock flow shockmδ  are shown by solid, dashed, and dotted lines, 
respectively. 
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where sc is the post-shock speed of sound, R is the shock compression ratio. The 

adiabatic exponent γ  and  R enter (4) separately, as the ideal gas equation of state might 

only be applicable to the target material when it expands after the shock passage.25 For 

the above parameter values (R = 4, γ = 5/3), (4) yields the half-period of  0.7 ns, again in 

agreement with Fig. 1(a), and almost an order of magnitude less than that given by Eq. 

(2). Figure 1(a) shows that the negative contribution of shockmδ  shifts the times of peak 

amplitude and phase reversal of totalmδ  to slightly earlier values compared to those 

characteristic of amδ : i. e., totalmδ  peaks and changes its phase earlier than amδ  by 0.2 ns 

and 0.15 ns, respectively.  

 Note another important difference between the oscillatory contributions to totalmδ  

from the ablation front and the shock front. As demonstrated by Figure 1(a), the decaying 

shock-induced oscillations cannot change the phase of the mass variation (except at a 

very late time, not shown in the figure, when the corresponding amplitude of oscillations 

becomes negligible22). On the contrary, the oscillations of the ablation front lead to an 

actual phase reversal [in Fig. 1(a), at about 3 ns], after which the modulation amplitude 

increases again, overshooting its initial value. In other words, a change of phase of mass 

modulation observed during the shock-rarefaction transit time could only be attributed to 

the ablative RM oscillations. 

 Therefore, to observe a half-cycle of ablative RM oscillations (i. e. to see the mass 

modulation reach its peak and then decrease below zero), we need to make the shock-

rarefaction transit time long enough to allow its contribution to become dominant. 
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Comparing Fig. 1(a) with Eq. (2) (phase reversal at 3 ns, estimated half-period 4.5 ns), 

we see that the required long transit time is roughly translated into ~1/3 of the oscillation 

period. Therefore, the following two conditions must be satisfied. (a) The driving laser 

pulse duration, Lt , should be longer than aΩ× /2)3/1( π  [cf. Fig. 1(a)], which leads to 

the condition 

 
a

D
L v

r
t

3

2/1λ
> .         (5) 

(b) The target should be sufficiently thick, so that the oscillation half-cycle completes 

before the rarefaction wave from the rear side of the target breaks out at its front side, 

triggering the RT growth. The rarefaction breakout time  could be estimated as 

D
L

D
L

Mtrb ×≅+= 5.1)~1( 0 ,        (6) 

where L is the initial thickness of the target, D is the velocity of the shock wave driven 

into the target, 1~
0 <M  is the Mach number characteristic of the shocked fluid flow with 

respect to the shock front18 (in this estimate, we assumed 5.0~
0 ≅M , close to the value 

45.05/1~
0 ==M  found for a strong shock in an ideal gas with γ = 5/3). Therefore the 

target thickness L should satisfy the condition 

 λ
a

D

v
Dr

L
9

2 2/1

> .         (7) 

For a relatively short perturbation wavelength 30=λ  µm, we find from (5) and 

(7): 3>Lt  ns, 80>L  µm. When the conditions (5), (7) are approached but not exactly 

met, one can expect to see a little more than a quarter of the RM oscillation: the mass 

modulation reaches its peak and starts decreasing. E. g., for the parameters of the 
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GEKKO-XII experiment26  ( 53.0=Lλ µm, ~40 TW/cm2, 60≥λ  µm), one finds from (5) 

that a 2.2 ns laser pulse duration is only sufficient for the mass modulation growth to 

slow down, approaching its first peak, as observed. 

When the reflected rarefaction wave breaks out, the ablation front starts to 

accelerate. The onset of the exponential RT growth occurs about Γ=∆ /1RTt  later than 

the start of acceleration, where Γ is the linear RT growth rate. To estimate RTt∆  from 

below, we assume the classical expression for 2/1
0

2/1 )/2()( Lpgk s λρπ==Γ , where sp  is 

the post-shock pressure, which yields 
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For the parameters of the above example and L = 60 µm, we obtain: 5.0=∆ RTt  ns. Then 

the mass modulation amplitude, having passed either through a minimum or through a 

phase reversal, starts growing again.  

 When the rear side of the target is rippled, the oscillations are caused by a 

different mechanism.18 The planar shock wave launched at the front side first reaches the 

valleys of the rippled rear side, where the target material starts to decompress, while the 

high post-shock pressure is maintained near the peaks. The lateral pressure gradient in a 

reflected rippled rarefaction wave drives the mass from the peaks to the valleys. Shortly, 

the lateral mass flow reverses the phase of mass modulation: more mass is collected (less 

mass is left) where the valleys (the peaks) were initially located. At the same time, a 

reversed pressure gradient builds up, slowing down the lateral mass flow. The mass 

modulation amplitude reaches its peak at reversed phase and starts decreasing; after a 

while, its phase is reversed for the second time, and there is again more mass at the initial 
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location of the peaks. The decaying oscillations of areal mass in a rippled rarefaction 

wave continue until its leading edge breaks out at the front side of the target. Then the 

acceleration begins, and, after RTt∆ , the exponential RT growth follows. 

The areal mass oscillations in a rippled rarefaction wave predicted by the small-

amplitude analytical theory of Ref. 18 are shown in Fig. 1(b). Here, all the parameters are 

the same as in Fig. 1(a) except the origin of time corresponds to the shock breakout at the 

rippled rear surface of the target. Comparing Fig. 1(b) to Fig. 1(a), we observe the 

oscillation frequency in a rippled rarefaction wave to be lower than that of the shock-

induced oscillations given by (4). This is because the temperature of the plasma 

expanding in a rarefaction wave decreases below its post-shock value, and so does the 

mass-averaged speed of sound. A rough estimate of the corresponding oscillation 

frequency rΩ is18 

sr Ω







+
−

=Ω
−− )3/()1(

1
)1(2

γγ

γ
γ

,      (9) 

where sΩ  is given by (4). For 3/5=γ  we find: 2/sr Ω=Ω , implying the oscillation 

half-period 0.95 ns, in agreement with Fig. 1(b). The amplitude of the areal mass 

oscillations in a rippled rarefaction wave, however, is much higher compared to those 

induced by a rippled shock wave. A rippled rarefaction wave can produce multiple 

observable phase reversals, provided that the rarefaction transit time is sufficiently long. 

To put it differently, these oscillations are observable if the target thickness L is not too 

small compared to the perturbation wavelength λ.  

The corresponding conditions derived from the general formulas of Ref. 18, are 

presented below for the same parameters as above (plastic, R = 4, γ  = 5/3) The first phase 
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reversal of mass modulation, which in Fig. 1(b) occurs at 0.3 ns after the shock breakout, 

is observable if 

 λ×> 9.0L .         (10) 

The mass modulation in a rippled rarefaction wave reaches its first negative peak [in Fig. 

1(b), at 0.9 ns after the shock breakout] if 

 λ×> 7.2L .         (11) 

The corresponding condition on the laser pulse duration clearly is 

 rbL tt > ,         (12) 

where rbt  is given by (6). When even the condition (10) is not satisfied, as in the 

experiment of Ref. 27 (L = 25 µm, λ = 100 µm), there is not enough time for the feedout-

related areal mass oscillations to occur, and the long-wavelength theory28 is applicable. In 

the indirect-drive feedout experiment29 (Al foil targets rippled on the rear side, λ = 50 

µm), the condition (10) is not satisfied only for a thin target (L = 35 µm). Indeed, for a 

thin target both the experiment and the simulation of Ref. 29 showed no phase reversal. 

Rather, a dip in the mass variation amplitude immediately after the shock breakout was 

detected, which was, of course, the beginning of the oscillation. For their intermediate (L 

= 50 µm) and thick (L = 85 µm) targets the condition (10) was satisfied with considerable 

margin. In agreement with (10), for the thick target the first phase reversal of mass 

modulation had been both observed and simulated.29 For the intermediate target it was 

predicted in their simulation but not observed in the experiment.29  

All the targets used in our feedout experiments (λ = 30 to 45 µm, L = 40 to 60 

µm) satisfied (10) but not (11). Consequently, the mass modulation was expected to 

always reverse its phase but not reach the maximum value predicted for the rippled 
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rarefaction wave, about 3 times the initial amplitude.18 Before this could happen, the 

leading edge of the rippled rarefaction wave breaks out at the front side of the target, 

starting the RT growth. The reflected rarefaction wave is first emitted from the valleys, 

then from the peaks, and propagates at the same velocity, equal to the post-shock speed 

of sound. Hence its leading edge first breaks out at the front side just opposite the valleys, 

where the target is thinner, and its areal mass initially lower.27, 28 These parts of the target 

are the first to start accelerating, and the RT mechanism immediately begins turning them 

into bubbles, further decreasing the areal mass at these locations, dumping the mass from 

there into the spikes that trail behind. This growth of mass modulation thus occurs in 

phase with the initial rear-surface ripples: the initially thin (thick) parts of the target 

become thinner (thicker). Since the inequality (10) is satisfied, the RT growth starts when 

the phase of total mass modulation in the volume of the target is reversed. Therefore, the 

RT growth has to compete against the lateral mass flow in the rippled rarefaction wave. 

Being exponential, the RT growth in most cases takes over shortly after its onset, see (8). 

Then the absolute value of mass modulation starts decreasing, reverses its phase again 

and continues to grow at its initial phase. We conclude that when the conditions (10) and 

(12) are satisfied, the mass modulation is expected to decrease, reverse its phase, increase 

and reach a peak at negative phase, then decrease again, exhibit a second phase reversal 

and continue to grow.  

The above conditions are quite restrictive. The experiments must be made with 

long laser pulses, thick targets, and relatively short perturbation wavelengths. Moreover, 

the oscillating perturbation amplitudes to be observed most of the time remain quite 

small, of the order of their initial values. It should be noted, however, that one important 
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requirement can be relaxed in comparison with experiments6-10 where the RT growth is 

measured. The initial perturbation amplitude 0a does not have to be very small compared 

to the perturbation wavelength; the values of 0ka up to 0.4 are acceptable, thus facilitating 

the observation. During the early-time period higher harmonics experience damped 

oscillation rather than unlimited growth, just as the fundamental, with the higher modes 

decaying faster. Consequently, they do not overtake the fundamental mode, and the 

observed oscillations are essentially linear in perturbation amplitude up to much higher 

values of ka  than in the cases of either exponential RT or linear classical RM interfacial 

growth. 

III. Experiment 

A. Experimental setup 

Our experiments were performed with the Nike KrF laser30 ( Lλ  = 248 nm). The 

laser radiation in 37 overlapping beams was focused to a spot 750 µm FWHM in 

diameter, with a flat central region 400 µm in diameter.  Most of our experiments were 

made at intensities ~50 TW/cm2.    The length of the main Nike pulse is 4 ns.  From 

equations (5), (6), (10), (12) we find that this is long enough both to complete a half-

cycle of the ablative RM oscillations and to reach the inverted peak of the mass 

oscillation in a rippled rarefaction wave before its breakout, provided that the 

perturbation wavelength λ is not greater than about 40 µm.  We used rippled planar 

plastic targets with λ = 30 and 45 µm and peak-to-valley amplitudes 02a  from 1 to 3 µm.  

Target thickness was 40-99 µm for RM and 40-60 µm for feedout experiments.  The 

highly smooth profile30 of the Nike laser ensured that laser-imposed perturbations were 

negligible compared to the target ripple.   
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Fig. 2. The general scheme of the experiment. Also shown are: (a) Test images of a 150-
to-400 lpi composite mesh obtained on x-ray film (quadrants) and on the open 
photocathode of the streak camera (insert in the middle);  wires of 7 µm width are clearly 
seen on both images, though the streak camera image obviously has less spatial 
resolution; (b) An actual streak record showing the RT growth of areal mass modulation 
– peaks and valleys are more pronounced at late time. Four-quadrant composite mesh was 
used for pointing the focal spot onto the streak camera slit with an accuracy of 20-30 µm. 
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We used backlighting and a monochromatic x-ray imaging system based on 

Bragg reflection from spherically curved crystals31 to observe the evolution of target 

mass perturbations.  X-ray imaging using curved crystals has been successfully used on 

the NRL Nike KrF laser for the past five years.20, 32, 33  Compared to other x-ray imaging 

techniques like pinholes, Kirkpatrick-Baez microscopes, and Fresnel lenses, a curved 

crystal imager has several advantages. It is a high throughput, high spatial resolution and, 

by nature, monochromatic diagnostic technique, all at the same time. Previously, the 

curved crystal imager has been used at NRL in combination with a framing camera to 

provide sequences of high spatial resolution still images (up to four snapshots that 

correspond to four different times) taken with a time resolution of 200 ps.32 This 

diagnostic technique is fully adequate when the observed mass non-uniformity varies 

monotonically in time, e. g., during the fast RT growth.32, 33 

Observation of the oscillating mass modulation presents a new challenge to the 

imaging diagnostics because of the essentially non-monotonic evolution of the processes 

under study. In these cases, the diagnostics that record a limited number of images 

incrementally over a relatively long period of time are difficult to apply: it is easy to lose 

important information or even completely miss the effect. The number of snapshots can 

only be increased by adding more crystal-backlighter pairs, which is technically difficult 

to the point of unfeasibility. To extend the capabilities of our diagnostic technique, we 

modified the Nike imaging diagnostic setup by adding a streak camera to the system, 

which made it possible to analyze continuous time behavior of x-ray images. 

The diagnostic setup is presented in Fig. 2.  Approximately 500 J is delivered to a 

silicon backlighter target, producing x-rays that backlight the main target for about 5 ns. 
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The spherically curved quartz crystal selects the resonance line of the He-like Si 

( =νh 1.86 keV) and projects a 2-D monochromatic image of the target on the entrance 

slit of an x-ray streak camera. The spatial resolution is retained in one relevant direction, 

i. e. along the wave vector of the ripple on the target surface, producing 1-D streak 

records. In addition to being capable of obtaining qualitatively different experimental 

results, the new modified system can do it using just one crystal and one backlighter. A 

somewhat similar setup with a thin slit as an imaging device has been used at NRL in 

1987 for pioneering measurements of the RT growth rates.6 

We used a quartz crystal with the cut 1011 and radius of curvature of 200 mm. 

With 1.86 keV probing energy, we were able to study up to ≈100 µm thick plastic (CH) 

targets rippled with perturbation wavelength λ = 30 or 45 µm from either the front or the 

rear side. The streak records were taken with a time resolution of 170 ps, which is 

sufficient for the 0.5 ns characteristic times of interest. The large field of view (500 µm) 

combined with the large flat top (400 µm) of the laser focal spot gave us more ripples 

available for Fourier transform analysis, thus ensuring confidence in determining both the 

amplitude and the phase of the dominant mode.  

The spatial resolution of the x-ray optical system itself was tested with the help of 

x-ray film as a detector and was found to be of order 6-7 µm (see Fig. 2).  High 

throughput of the x-ray optical system allowed us to magnify the images by a factor of 

20.  However, the overall spatial resolution was still limited by the streak camera. In 

order to quantify the resolution of the x-ray crystal/streak camera system, a measurement 

of its modulation transfer function (MTF) was necessary. The MTF of the entire 

diagnostic system was obtained by imaging a knife-edge target. The derivative of the 
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measured edge profile gave the line-spread function (LSF) of the system, from which the 

MTF could be obtained by Fourier transform.34 To reduce the noise introduced by 

differentiation, a non-linear least-squares fit was applied to the LSF. It was found that the 

LSF is well fitted by the sum of a Gaussian and a Lorentzian. The MTF was then 

obtained by applying Fourier transform to the resulting fit. For magnification of 20×, the 

MTF at λ = 45 and 30 µm was found to be 0.6 and 0.4, respectively, and was used to 

correct the measured mode amplitude in the experiments.  

The MTF was also verified directly by imaging undriven targets with known 

amplitudes (Fig. 3).  The variation in measured amplitude (dashed lines) is due to the 

noise in our system.  When averaged over longer time (solid lines), the measurements on 

targets of either wavelength are seen to reproduce the expected amplitudes. Amplitude of 

the noise gives us an idea of an experimental error (the width of the shaded area), with 

which we can measure the mass perturbations.  In these and all of the following figures, 

the mode amplitude as a function of time was determined using a routine based on Fast 

Fourier analysis of the streaked images. 

Since the spatial resolution of the system is limited by the spatial resolution of the streak 

camera, it is possible to improve the MTF of the whole system by increasing of the 

magnification of the X-ray optical system.  Figure 4 shows a significant improvement in 

the image quality when the magnification was changed from 20 to 30.  A 30× magnified 

image of a 400-lpi test mesh is shown on the left. The insert corresponds to the lower 

magnification of 20×. It is visibly more blurred than the image taken with higher 

magnification. The graph on the right side represents the MTFs measured for the two 

magnifications. The insert shows the lineouts of knife-edge images. The gray curve  
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Fig. 3.  Areal mass modulation as measured (dashed lines) and after smoothing by 
averaging over longer time (solid lines). Amplitude of the noise characterizes the 
experimental error bar for the areal mass modulation measurements (the width of the 
shaded area). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Left: 30× magnified image of a 400-lpi test mesh (20× magnified image of the 
same in the insert.) Right: the MTFs measured for the two magnifications. The insert 
shows the lineouts of the two corresponding knife-edge images. The white curve 
corresponding to higher magnification is steeper than the black low-magnification one 
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corresponding to the higher magnification is steeper than the black low magnification 

one.  Due to the decrease in the photon count we would be able to use the higher 

magnification only for targets with the thickness of 40 µm.   

B. Experimental results: Ablative RM instability 

For the experiments on ablative RM instability, we used planar plastic targets 40 

to 99 µm thick, rippled on the front side as a 2-D sine wave kxa sin0  with perturbation 

wavelength λ = 30 or 45 µm. The streak records are Fourier transformed, giving both the 

amplitude and the phase of the dominant perturbation mode as functions of time. The 

observed modulation of the probing x-rays is exponentially related to mass modulation 

integrated over the line of sight, which is expressed in units of µm×g/cm3. We present the 

MTF-corrected Fourier peak-to-valley areal mass modulation amplitudes normalized to 

the solid plastic density, 1.07 g/cm3, thus expressing them in microns. Initially, the 

amplitude normalized this way simply equals the p-t-v amplitude of the front surface 

ripple. After the irradiation starts, however, the Fourier amplitude no longer can be 

interpreted simply as the amplitude of the interfacial ripples. Displacements of the rippled 

ablation front and of the rippled shock front launched into the target from its rippled 

surface, as well as the integrated density non-uniformity in the plasma between the shock 

and ablation fronts all contribute to the observed mass modulation. Theory and 

simulations12-17 indicate that the contribution from the displacement of the ablation front 

becomes dominant long before the RT growth starts, see Fig.1 (a), but even then our 

normalized Fourier amplitude is not the same as the ripple amplitude, since the density at 

the ablation front is not the same as solid plastic density. 
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A clear example of the ablative RM oscillation is seen in Fig. 5, which shows the 

streak record (left), its lineouts at four different instants, and the Fourier amplitude of the 

dominant mode vs. time (right). The mass modulation amplitude grows almost by a factor 

of 5 within the first 1.5 ns, after which it starts decreasing. Substituting L = 65 µm, D = 

4×106 cm/s into (6), we find that the rarefaction wave coming from the rear side breaks 

out at the front side, starting the RT growth, at about 2.4 ns (this estimate is consistent 

with our simulations). Figure 5 shows that the lateral mass flow in the negative direction 

(that is, decreasing the areal mass where it is high and increasing it where it is low) 

caused by the ablative RM oscillatory mechanism successfully competes against the RT 

growth (which would drive the mass laterally in opposite direction) for about =∆ RTt 0.6 

ns, see (8). After the minimum of mass modulation is reached, at about half its first peak 

amplitude, the RT growth prevails, and the amplitude starts growing again, peaking at 

about 9 times the initial amplitude.  At this time the laser pulse is over and the target 

decompresses. 

For a thicker target, the rarefaction wave would break out later, hence the decreasing 

phase of the oscillations should last longer, leading eventually to the phase reversal of 

mass modulation.12, 15 The target thickness L required to observe the phase reversal, all 

other conditions being the same as in Fig. 5, can be roughly estimated from (7), where the 

value of 054.0=Dr  appropriate for λ = 45 µm, should be used: L > 93 µm. In Fig. 6, we 

compare the time histories of the dominant mode amplitudes for two targets: one 65 µm 

thick (same curve as shown in Fig. 5), and the other 95 µm thick. The curve obtained for 

the thicker target is identical within the experimental error (the data is noisier because 

less light gets through the thicker target to the streak camera) to the time  
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Fig. 5. Left: original streak record along with the amplitude lineouts taken across the 
ripples at four benchmarking times (the inserts). Right: the time-dependent Fourier 
amplitude of the dominant mode vs. time for a 65 µm thick target with λ = 45 µm and 
initial peak-to-valley amplitude 32 0 =a  µm, also marked at four important times: 
beginning of the pulse, first peak, etc. The origin of time t = 0 here and elsewhere 
corresponds to the instant when the laser beam intensity reaches half maximum. The 
thickness of the shaded area approximately corresponds to the experimental uncertainty. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

Fig. 6. Time histories of areal mass modulation amplitude compared for a 65 µm thick 
(gray line, same as in Fig. 5) and a 95 µm thick target (black line). 
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history recorded for a thinner target until the RT growth in the latter begins, as expected.  

For the thicker target, we find from (4): 6.3=rbt  ns. Expecting about the same 6≅∆ RTt  

ns delay between the rarefaction breakout and the start of the observed RT growth as in 

Fig. 5, we conclude that the RT growth starting at about 4.3 ns could have been seen if 

the driving laser radiation was still on. Since it is already over at 4 ns, none of the RT 

growth is seen for the 95 µm thick target. 

As illustrated by Eq. (2), the period of the ablative RM oscillations scales as ,2/1
Drλ  

roughly as some positive power of λ. Therefore, to make the phase reversal of areal mass 

modulation observable, a shorter wavelength is needed.  From Fig. 1(a) and Eqs. (5) and 

(7) one finds that for the shortest wavelength available to us, λ = 30 µm, the phase 

reversal is expected at about 3 ns, and the target thickness should be no less than 80 µm. 

Hence a 99 µm thick target should be thick enough to observe the phase reversal. This is 

indeed the case. Figure 7(a) compares the time histories for two targets, one 95 µm thick 

with the perturbation wavelength λ = 45 µm, 32 0 =a  µm (same as in Fig. 6), and the 

other 99 µm thick with λ = 30 µm, 22 0 =a  µm. The signal for the latter is noisier than 

for the former, due to both shorter wavelength and smaller initial amplitude. Figure 7(b) 

shows the measured real part of the amplitude and the phase of the dominant Fourier 

mode. The mass modulation amplitude is seen to pass through zero at about 3.3 ns, where 

a phase reversal is observed. After that, the perturbation amplitude starts to increase in 

the negative direction.  Note that this is due to the oscillation continuing after the phase 

reversal rather than a beginning of the RT growth in the negative direction. Substituting λ 

= 30 µm, L = 99 µm and 6104×=D  cm/s into (6) and (8), we obtain: 6.3=rbt  ns,  
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Fig. 7. (a) Time histories of areal mass modulation amplitudes compared for 95 µm thick 
target with λ = 45 µm (gray line) and 99 µm thick, λ = 30 µm target (black line). Initial 
amplitudes are normalized to 2 µm peak-to-valley.  
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Figure 7(b).  The real part of the amplitude and phase of mass modulation vs. time for the 
target with λ = 30 µm. The thickness of the shaded areas approximately corresponds to 
the experimental uncertainty. 
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6.0=∆ RTt  ns, so that the phase reversal occurs before the onset of the exponential RT 

growth. Indeed, as discussed above, no such growth is observed (and no phase reversal is 

seen) in a target of almost the same thickness L = 95 µm with a longer perturbation 

wavelength, λ = 45 µm. This is consistent with the analytical theory, which for the latter 

case predicts no phase reversal before 3.75 ns, which is actually after the rarefaction 

breakout. It is instructive to contrast Fig. 7(a) to Fig. 8 below, where a similar 

comparison is made for thinner targets, and the RT growth is seen to start at the same 

time for both perturbation wavelengths. As pointed out in Section II, the observed phase 

reversal is a clear indication that the oscillation of areal mass amplitude is caused by the 

ablative RM instability rather than the rippled shock front. 

 In Figure 8, we compare the RM oscillations in two targets of the same thickness, 

65 µm (same as in Fig. 5; thinner than in Fig. 7): one with λ = 45 µm, 32 0 =a  µm and 

the other with λ = 30 µm, 22 0 =a  µm. In the figure, both curves are normalized to the 

same initial amplitude, 1 µm.  The two curves are qualitatively similar, demonstrating 

reproducibility and robustness of the oscillatory behavior under varied conditions. The 

mass modulation amplitude in both cases reaches a peak and then decreases until the RT 

growth starts shortly after 3 ns in both cases, as expected ( 4.2≅rbt  ns for both targets, 

=∆ RTt 0.5 ns and 0.6 ns for short and long wavelength, respectively).  The first peaks in 

both cases are observed at about the same time, which is not in contradiction to the 

theory.15, 16 Taking into account that the period of oscillations of the ablation front scales 

as 2/1
Drλ , whereas the period of shock-induced oscillations scales as λ [cf. Eqs. (2) and 

(4), respectively], and comparing Fig. 1(a) with a similar graph plotted for λ = 45 µm, we  
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Fig. 8. Time histories of areal mass modulation amplitudes compared for 65 µm thick 
targets with λ = 45 µm (gray line, same as in Fig. 5) and λ = 30 µm (black line). Initial 
amplitudes are normalized to 1 µm peak-to-valley. 
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find that the first peak of mass modulation amplitude for the λ = 45 µm case occurs about 

0.4 ns later than for the λ = 30 µm case - a difference that is hardly resolvable at our level 

of accuracy. An unexpected well-resolved feature is the large absolute difference between 

the two normalized curves in Fig. 7. The theory, 15, 16 as well as our simulations, see 

below, predict them to be much closer to each other. 

 Our experimental results are compared to simulations performed in two 

dimensions (2D) using the FAST2D hydrocode developed at the Naval Research 

Laboratory35 (more details about the code and further references are given in Refs. 12, 

16, 18). Figure 9 presents a comparison similar to that shown in Fig. 6: same perturbation 

wavelength, different thickness of the two targets. There is a qualitative agreement with 

Fig. 6: for a thinner target, the RT growth starts earlier, while for a thicker target the 

oscillation cycle continues. We see also some difference: in a 94 µm thick target, the 

simulated amplitude reaches a minimum and features the onset of the RT growth shortly 

before the laser pulse is over at 4 ns. It appears that in the simulation the RT growth starts 

slightly earlier and proceeds somewhat faster than seen in our experiment. The same 

conclusion could be drawn from Fig. 10, where evolution of perturbations with different 

wavelengths in targets of the same thickness are compared (cf. Fig. 8). Note that the 

amplitudes of the first peaks for λ = 30 µm and 45 µm in the experiment differ 

considerably, whereas in the simulation they are quite close to each other, in agreement 

with the theory. 

 C. Experimental results: Feedout 

For the experiments on feedout, we used planar plastic targets 40 to 60 µm thick, 

rippled at the rear side with perturbation wavelength λ = 30 or 45 µm.  For our  
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Fig. 9. Simulated time histories of areal mass modulation amplitude compared for a 65 
µm thick (dotted line) and a 94 µm thick target (solid line) with λ = 45 µm. 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 10. Simulated time histories of areal mass modulation amplitude compared 

for 65 µm thick targets with λ = 30 µm and 45 µm. 
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experimental conditions, the theory18 and simulations predict two phase reversals of mass 

modulation.  Observing the feedout-related oscillations is even more challenging than 

those caused by the ablative RM instability. Indeed, the latter occur at larger perturbation 

amplitudes, typically exceeding its initial value by a factor of 3 to 5 (as in Figs. 5-8). 

Here, on the other hand, we have to measure mass perturbations smaller than the initial 

amplitude. It was still possible thanks to the high resolution and contrast of our 

diagnostics. 

Figure 11 shows an original streak record of a target with thickness 60 µm, λ = 46 

µm.   Also shown are its lineouts at three different times. The two phase reversals 

illustrated by the lineouts are clearly visible on the original streak record. The light and 

dark stripes that correspond to low and high areal mass, respectively, are seen at early 

time, and then disappear, as if they were smeared out in a horizontal band ~0.5 ns wide. 

Then the stripes reappear, but the light and dark ones are interchanged, indicating the first 

180° phase reversal. It occurs about the time found from Eqs. (9) and (11) [or, more 

accurately, from Eq. (1)  of  Ref. 22], t  ≅ 2 ns. 

For a much thicker target, the theory18 predicts the second phase reversal to occur due to 

the areal mass oscillations in a rippled rarefaction wave, see Fig. 1(b).  All other 

conditions being equal, we would need a ~200 µm thick target driven by a >5 ns long 

laser pulse to observe it at t  ≅ 4.8 ns, both of which exceed the capabilities of our 

experiment.  In our case, shortly after the first phase reversal, at about 2.5 ns, the rippled 

rarefaction wave breaks out at the front surface of the target, and the RT growth in the 

positive direction (at the initial phase) starts from there, as explained in Section II. This 

causes the phase of areal mass modulation to be reversed again, this time at about 4 ns,  
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Fig. 11. Left: original streak record for a feedout target. Right: its lineouts at three 
different times for target thickness 60 µm and λ = 46 µm. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 12. Time histories of areal mass modulation amplitude and phase for the streak 
record shown in Fig. 11. 
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producing another smeared band on the original streak record. The subsequent RT growth 

is also clearly seen: the dark and light stripes, representing peaks and valleys of areal 

mass distribution, respectively, become more pronounced at late times. 

Figure 12 shows the amplitude and phase of mass modulation vs. time for the 

same case. Two rapid changes of phase are seen at about 2 and 4 ns, confirming visual 

observation of two phase reversals on the original streak record in Fig. 11. 

Figure 13 compares the evolution of mass modulation for two targets of different 

thickness: 60 µm and 40 µm. As expected, during the time that the evolution is governed 

by the mass variation in a rippled rarefaction wave, there is little difference between the 

two time histories: both feature the first phase reversal after ~0.5 ns after the shock 

breakout, at ~2 and ~1.5 ns, respectively. In a thinner target, however, the reflected 

rarefaction wave breaks out earlier, at about 1.5 ns, Then, as described in Section II [see 

Fig. 1(b)], the lateral mass flow in the rippled rarefaction wave increases the amplitude in 

the negative direction, but the RT growth, starting from the initially planar front surface, 

increases it in the positive direction. At about 2 ns, the fast RT growth prevails, and the 

absolute value of the modulation amplitude starts decreasing after having reached a 

negative peak less than the initial amplitude. Shortly after this, it reverses its phase again, 

and keeps growing.  This can be compared to a 60 µm target, where the rippled 

rarefaction wave has more time to build up the negative peak. Here, the RT growth 

prevails at about 3 ns, the negative peak reaching twice the initial amplitude. Then we see 

qualitatively the same evolution as observed for a 40 µm target: decrease, phase reversal, 

and the subsequent RT growth. 
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Fig. 13. Time histories of areal mass modulation amplitudes compared for a 60 µm thick 
(top, same as in Figs. 9 and 10) and a 40 µm thick target (bottom). Arrows indicate the 
phase reversals. The thickness of the shaded areas approximately corresponds to the 
experimental uncertainty. 
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The period of oscillations in a rippled rarefaction wave scales proportionally to 

the perturbation wavelength.18 Therefore, the evolution of mass modulation in two targets 

of the same thickness with different perturbation wavelengths is expected to differ 

qualitatively from that shown in Fig. 8. Between the shock breakout at the rear surface 

and the reflected rarefaction breakout at the front surface (this time interval is the same 

for both targets), the short-wavelength perturbation goes deeper into the negative peak. 

Then, when the time comes for the RT growth in the positive direction (cf. Fig. 13), the 

short-wavelength perturbation amplitude, having reached farther into the negative, finds 

itself lagging behind. The long-wavelength perturbation, having started its RT growth 

from a smaller negative amplitude, reaches higher positive values. This is indeed 

confirmed by Fig. 14, where two 60 µm thick targets with rippled rear surfaces are 

compared, one with λ = 45 µm, and another with λ = 30 µm. In Fig. 14, the mass 

modulation amplitude is plotted with a proper sign: negative between the two phase 

reversals. We see that, in contrast with Fig. 8, within the time frame of the Nike laser 

pulse, the long-wavelength modulation grows to higher amplitude than the short-

wavelength one. 

The trends seen in the feedout experiments are compared to the simulation results in Figs. 

15 and 16. Figure 15 presents a comparison similar to that shown in Fig. 13: same 

wavelength, different thickness of the two targets. As expected, in the thicker target the 

growth of the modulation amplitude in the negative direction proceeds farther, and the 

corresponding minimum is deeper. It is not as deep, however, as observed (cf. Fig. 14), 

which is about twice the initial amplitude. As in Section III.B (e. g., cf. Figs. 6, 9), it 

appears that the RT growth that competes with the downward trend, eventually making  
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Fig. 14. Time histories of areal mass modulation amplitudes compared for 60 µm thick 
targets with λ = 45 µm (gray line) and λ = 30 µm (black line). In the gray area around 
zero, the measured amplitudes are in the noise. Initial amplitudes are normalized to 3 µm 
peak-to-valley. The thickness of the shaded area approximately corresponds to the 
experimental uncertainty. 
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Fig. 15. Simulated time histories of areal mass modulation amplitude compared for 60 
µm thick (dashed line) and 40 µm thick targets (solid line) with λ = 45 µm. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 16. Simulated time histories of areal mass modulation amplitude compared for 60 
µm thick targets with λ = 45 µm (dashed line) and λ = 30 µm (solid line). 
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the mass modulation amplitude increase in the positive direction, starts somewhat 

earlier in the simulation than in the experiment, thus producing a shallower negative 

peak. The same is indicated by Fig. 16, where the oscillations are compared for two 

targets of the same thickness that have different perturbation wavelengths. Indeed, the 

oscillation proceeds faster for the target with a shorter wavelength, λ = 30 µm, where a 

deeper negative peak is developed. However, once the fast RT growth in the positive 

direction starts, it also proceeds faster at a shorter wavelength. In the simulation, there is 

enough time to reach a higher positive amplitude in the target with λ = 30 µm compared 

to the target with λ = 45 µm, in contrast with what is seen in Fig. 14. Once again, the RT 

growth in the experiment seems to start later. 

IV. Conclusions 

 In our experiments we have observed an oscillatory evolution of areal mass 

perturbations in an ablatively driven target during the shock-rarefaction transit time. 

Though these observations were made in a planar geometry, they are nevertheless 

relevant to understanding and modeling the RT instability seeding in spherical targets. 

The front surface ripple, which excites the ablative RM instability, corresponds to a mode 

of the outer surface roughness of a spherical direct-drive target. Both theory and 

simulations12-17 indicate that the physics of RM oscillations excited by either surface 

ripple or single-mode, constant phase laser beam non-uniformity, is identical. Using the 

former case to validate the codes, the capacity for modeling the latter can be improved. 

Similarly, the rear surface ripple corresponds to a mode of the inner surface roughness of 

a spherical target, which seeds the RT growth via the feedout mechanism, regardless of 

whether a direct or indirect drive is used.  
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Prior to our experiments, theory and simulations predicted the oscillations of areal 

mass to occur during the shock-rarefaction transit time. Our experimental results are in a 

general agreement with these predictions. Qualitatively, the agreement is fine: the 

sequence of phases when the mass modulation amplitude increases and decreases, the 

number of its phase reversals, the changes in the evolution expected when either the 

target thickness or the perturbation wavelength is varied, are all in accord with the theory. 

Quantitatively, the agreement is reasonable; in particular, the periods and amplitudes of 

the oscillations, the positions of the positive and negative peaks are typically close to the 

observed values. In one respect, however, there is a consistent quantitative discrepancy 

between our experimental results and the 2-D computer simulations. For both front and 

rear surface ripples, the simulations have in all cases predicted the RT growth to start 

slightly earlier than observed (by about 0.4 ns) and to proceed somewhat faster. It could 

be due to some factors that might affect the early-time evolution, but have not been 

accounted for in our simulations: i. e., any low-intensity amplified spontaneous emission 

(ASE) incident on the target for tens of ns prior to the main pulse. This issue has to be 

resolved in our future studies. 

Numerous attractive opportunities are open for new experiments on the oscillatory 

early-time behavior that could be made using our diagnostics. For instance, as suggested 

in Ref. 12, the shock transit time can be extended without increasing the areal mass of the 

target (and thereby decreasing the photon count). To do this, we need low-density foam 

targets (either rippled or with a solid rippled cover on top) instead of solid plastic targets. 

Using deuterium-wicked foams, 33 it might even be possible to  observe the ablative RM 

oscillations in a liquid deuterium target. Deuterium is transparent for the backlighting 
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keV x-ray radiation, but the density variation in the background plastic foam should be 

observable with our diagnostics. For the feedout geometry, it is interesting to test the 

theoretical predictions that in some situations there should be one, three, or even four 

phase reversals rather than two that we have observed. Three or one phase reversals are 

expected when the main laser pulse is preceded by a substantial “foot”; four are possible 

when the ratio of the target thickness to the perturbation wavelength is above  ~4. If the 

number of phase reversals were odd, then the RT bubbles would be produced, counter-

intuitively, where the target was initially thicker.18 
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