Electron energy deposition in an e-beam pumped KrF amplifier:

impact of beam power and energy

G. M. Petrov

Berkeley Scholars, Inc., P.O.Box 852, Springfield, VA 22150

J. L. Giuliani, and A. Dasgupta
Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375

(December 23, 2002)

Abstract

The electron deposition in an Ar-Kr-Fy mixture, based on solution of the
electron Boltzmann equation, is presented. The model is relevant to an e-
beam generated KrF* laser amplifier at atmospheric pressure. Sets of cross
sections for Ar, Kr and Fs have been compiled. Calculations have been per-
formed to determine the electron energy distribution function, energy per
electron-ion pair and the ionization and excitation rates. It is found that in-
clusion of inner shell ionization and the subsequent Auger emission is essential
for matching known results on both the energy per ion-electron pair We; and
the stopping power in pure Ar or Kr target gases. For the chosen Ar-Kr-F,
mixture, W; is calculated to be 24.6 eV. The excitation-to-ionization ratio
is calculated to be 0.38 for Ar and 0.54 for Kr at low input power density
Pregrm (1 KW/ cm?>. Both ratios increase with Pyegm, particularly for Kr which
attains 0.8 at 1 MW /cm?®. The dependency on Py, and the excitation effi-
ciency for Kr is significantly higher than previuously asumed in KrF* kinetic

models. Results are also compared with the Continuous Slowing Down Ap-



proximation to demonstrate that this approach is limited to the regime of low

power deposition.
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I. INTRODUCTION

The KrF* laser is the highest power and highest efficiency gas laser in the UV region of
the spectrum. Based on scaling from laser experiments such as LAM !, NIKE 23, ELECTRA
4 and others®, multiple amplifier systems are potential candidates for inertial confinement
fusion energy®. Large aperature KrF* lasers at near atmospheric pressure are pumped by
high power density (hundreds of kW /cm?), high energy (hundreds of KeV) electron beams.
The deposition of the electron energy occurs primarily through inelastic collisions with the
Ar and Kr gases in the amplifier, since Fo is a minor constituent. The ionization and
excitation rates of the rare gas (Rg) species produced by the beam deposition are essential
input for modeling the gas kinetics of the amplifier” ''. The direct formation of the KrF*
exciplex proceeds by ionic recombination (Kr™ + F~ — KrF*) and the harpoon reaction
(Kr* + Fo — KrF* + F). Furthermore, Rg* and Rg" initiate reactions leading to other
excimers and formation pathways (e.g., ArF* + Kr — KrF* 4+ Ar). The ionization rate for
a rare gas species by an e-beam is given by Pyegm/[NroWei(Rg)], where N, is the rare gas
density, Pye.m is the e-beam power density measured in the amplifier by a pressure-jump
method®, and W,;(Rg) is the energy per ion-electron pair created. The last quantity has been
measured for many pure gases'®!3: W,; = 26.2 eV for Ar and 24.3 eV for Kr. On the other
hand, the excitation rate is not directly measured but is instead determined from a detailed
model of the degradation of beam electrons and all generations of secondary electrons. The
excitation rate is often expressed through the number of excitations per ionization.

Peterson and Allen'* employed the continuous slowing down approximation!®¢ (CSDA)
to estimate the excitation and ionization efficiencies along with the loss function in Ar. The
set of phenomenological cross sections for electron impact from the ground state included
excitation to various levels as well as valence shell and inner-shell ionization. Because ioniza-
tion produces a secondary electron, a deposition model also requires the energy differential
ionization cross sections, S%*"(¢, u), which gives the distribution of energies u for the ejected

electron due to ionization by a primary of energy €. [ S%"(e, u)du equals the total ionization



cross section. By adjusting the width for u in S%"(e,u) Peterson and Allen were able to
generate a loss function that agrees with the stopping power in Ar at 10 keV from Berger
and Seltzer'”. However W,;(Ar) was found to be too large, 29.0 eV, and it was suggested
that the discrepancy may be due to the nature of the CSDA. Summing all the excitation ef-
ficiencies from their results one finds that the excitation-to-ionization ratio for Ar is ~ 0.28.
Based on the similarity of the electronic structure between Ar and Kr, Lorents!® surmised
that the excitation-to-ionization ratio for Kr is ~ 0.35. Since this work all models for the
KrF* kinetics in e-beam pumped amplifiers have adopted excitation ratios for Ar and Kr
between 0.28 and 0.35, independent of the beam power density.

A more general approach for the ionization and excitation rates produced by an e-beam
is to evaluate them from the electron energy distribution function (EEDF). Bretagne, et al.'®
determined the EEDF for an Ar target gas above the lowest threshold energy (11.56 eV)
using a reduced Boltzmann equation which neglected electron-neutral and Coulomb collisions
between electrons. The processes included in their degradation model were excitation, with
the same cross sections as given by Peterson and Allen, and valence shell ionization, but not
inner-shell ionization. The form used for the energy differential ionization cross section for
the valence shell was based on the analytic expression of Green and Sawada?’ and fitted to
the experimental data of Vroom, et al.?!. It is narrower than the function used by Peterson
and Allen and the total ionization cross section is smaller, in better agreement with data
for Ar?2. The calculated value for W,;(Ar) was 25.4 eV, close to the observed one, but
no comparison with the Ar stopping power was presented. Using Bretagne, et al.’s cross
sections we find that the resultant loss function is a factor of 2 smaller than the Ar stopping
power of Berger and Seltzer. From the branching ratios presented by Bretagne, et al., one
finds an excitation-to-ionization ratio for Ar of ~ 0.35, noticeably higher than calculated by
Peterson and Allen.

Other analyses of the e-beam degradation in rare gases have been performed but the
excitation-to-ionization ratio was not evaluated or was based on only a couple of excitation

channels. The continuous nature of the CSDA can be amended to account for the discrete
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energy loss in each inelastic collision'® by using the Fowler equation? or a Monte Carlo

calculation?*. Dayashankar?

examined the ionization yield in Kr due to an e-beam and
recovered W,;(Kr) = 23.6 eV. Inner shell ionization and the Auger effect were included.
Elliot and Green?® considered the EEDF in a beam generated Ar plasma, including Coulomb
collisions between electrons, impact excitation to the lumped 4s and 3d configurations, and
the energy range below 11.56 eV. Notably, the EEDF was found to be Maxwellian below
the lowest excitation threshold but the tail above the ionization energy is depleted. This
is relevant to KrF* kinetics since some models have treated the deposition as producing a
beam component for the fast electrons superimposed over a pure Maxwellian distribution for
the bulk electrons®. This approximation can overestimate ionization by the bulk component
if the mean energy of the bulk electrons is several eV.

There are thus significant reasons to reinvestigate the ionization and excitation rates
produced in an e-beam generated plasma as applied to KrF* amplifiers. (i) At present
an inconsistency exists between the degradation models: the CSDA of Peterson and Allen
agrees with the Ar stopping power but not the measured energy per ion-electron pair, while
the opposite occurs for the reduced Boltzmann model used by Bretagne, et al. (ii) The Kr
excitation efficiency in a KrF* mixture has not been analyzed, even though Kr is obviously
an essential constituent and has a lower excitation threshold than Ar. (iii) Improved cross
sections for electronic excitations of both Ar and Kr are available from experiments?®27
and theory®®. (iv) A Boltzmann solution for the excitation-to-ionization ratio including
many excited states, elastic scattering for the low energy component, and a self-consistent
treatment of the electron density is lacking.

In the present paper, we solve the steady state, spatially independent, electron Boltz-
mann equation from the beam energy down to 0 eV to study the ionization and excitation
rates in a beam generated Ar-Kr-F, plasma (68.5% Ar, 31% Kr, 0.5% F5). A nearly com-
plete set of cross sections are presented for electron-neutral elastic scattering, excitation

(from new data), valence and inner shell ionizations, as well as Coulomb collisions between

electrons for relaxation. The electron energy distribution function, mean energy of the bulk



electrons and density, branching ratios for various energy channels, energy per electron-ion
pair, and loss function are investigated at different beam powers and beam energies for the
chosen mixture. The electron Boltzmann equation accounts for relaxation of the distribu-
tion function around the excitation threshold which is important at high electron densities
(ne ~ 10" cm=3)#733 The trend toward Maxwellianization enhances excitation but not
ionization, and cannot be modeled by the CSDA. In addition, in Kr/Ar mixtures the EEDF
responds to the lower excitation threshold of Kr and the excitation rates of Kr are affected.
The CSDA is appropriate only at low electron densities, where electron Coulomb collisions
can be neglected.

Investigations based on solution of the electron Boltzmann equation for laser amplifiers
have also not addressed inner shell ionization and the production of Auger electrons. Al-
though the probability for inner shell ionization is smaller than valence shell ionization, it is
important to the electron power loss, and the resultant Auger electrons are born with plenty
of energy for further ionizations. By including these processes we have found reasonable
agreement with both the data for the energy per ion-electron pair and the stopping power
in pure Ar and Kr target gases. Our results indicate that the excitation-to-ionization ratios
are ~ 0.38 for Ar and 0.54 for Kr for the chosen mixture. Furthermore, both ratios are
found to increase with beam power density due to the increase in n,. This is especially true
for Kr, which ratio rises to 0.8 at 1 MW /cm?®.

The paper is organized as follows. The electron Boltzmann equation and its solution
are discussed in Section II. Section III contains a discussion of the cross sections used in
the analysis. The results of the electron beam deposition for different beam conditions are

presented in the next section and a summary concludes the report.



II. ELECTRON ENERGY DEPOSITION MODEL

A. The electron Boltzmann equation

The electron energy distribution function is a key characteristic in every simulation pro-
cedure regarding discharge kinetics and the correct description of the plasma properties
require its calculation in every particular case. It is well recognized that the electron distri-
bution function in an e-beam generated plasma possesses a complex structure. Due to the
presence of high energy (keV) beam electrons the EEDF extends to energies equal to that of
the beam electrons. The EEDF is obtained by solving the steady state, electron Boltzmann
equation for a plasma sustained by an uniform e-beam. The collisional processes consid-
ered include elastic collisions (electron-atom and electron-molecule), Coulomb collisions, as
well as inelastic collisions (vibrational excitation, excitation to electronically excited states,
attachment to Fy molecules and ionization). Only processes with ground state atoms and
molecules are considered here. Without an external electric field, the electron Boltzmann

equation in cgs units can be written in form?:
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The energy distribution of the plasma electrons f(w) is normalized according to n, =
Jo° f(u)du. T, is the gas temperature in energy units, m and e are the mass and mag-
nitude of electron charge, respectively, and v(u) is the absolute value of the electron velocity
with kinetic energy u. Furthermore, M,, N,, and 01" (u) are the mass, density and the
momentum transfer cross section of heavy particle a=Ar, Kr and Fs.

The first term in the right hand side of Eq. (1) is the flux of electrons along the energy
space driven by elastic electron-neutral collisions. The second term represents Coulomb

collisions between electrons using the conventional Fokker-Planck expression with the two

integral terms P(u) = 2u~Y2 [Fef(e)de + 2u [Z° € /2 f(e)de and Q(u) = 3u~2 [* f(e)de.

In(L) is the Coulomb logarithm, where L = ( 4’%?;2)% 7;—:23, kp is the Boltzmann constant,
T, and n, are the electron temperature and density respectively and vy is the magnitude
of the electron velocity. Excitation to the /-th level of species o from the ground state is
characterized by the cross section 05%(u) and energy threshold Us%. In addition, several
collision processes with Fo molecules are taken into account: vibrational excitation (upper
index ”vib”), dissociation (upper index ”dis”) and attachment (upper index ”att”). For
simplicity the first two processes are described with a lumped cross section.

After an ionization event the available kinetic energy is shared between the scattered and
secondary electrons. The first integral term of Eq. (1) accounts for the scattered primary
electrons which reenter the distribution at energy w as a result of ionizing collisions by
electrons with incident energies between u + U} and 2u + U, while the second integral
term accounts for all the secondary electrons which reenter the distribution at energy u
as a result of ionizing collisions by primary electrons with energies between 2u + Ugf,’c‘ and
0o. The third term describes the electrons leaving the distribution at energy u as a result
of ionizing collisions. The index k = v,i is summed over the valence shell v (M-shell for
Ar and N-shell for Kr) and inner shell ¢ (L-shell for Ar and M-shell for Kr) ionization
processes. Each ionization is characterized by an energy differential cross section Si% (e, u),

in which a primary electron with energy e creates a secondary electron with energy uw. The



ionization from shell k of species o has a threshold of U°? and a total ionization cross section
ol (e) = Jo Jamas (e, u)du. Tomae = (e—UR)/2 is the maximum energy of the secondary
electron.

The next term describes ionization by the beam electrons which enter the plasma with
energy Upeqm- The distribution of the beam electrons may come from experiment or other
theoretical considerations, but in most practical cases it does not play significant role. To
imitate a monoenergetic electron beam, we prescribe a Gaussian profile for the e-beam
distribution ¢?%™(u) = (ru,) /* e (#Vkem)’/%% | with normalization [ ¢ (u)du = 1.
The width of the energy distribution, u,,, is assumed to be much smaller than the beam
energy itself and in all calculations we used u, = 0.01Ujeqr,. The ionization rate R**™ by
the beam electrons is calculated from the power deposition in the plasma (see subsection
B).

The flux of Auger electrons with energy u appearing due to Auger emission from species
a=ArKr is treated as source term in Eq. (1). R%*9¢" and 1)%“9¢" are the rate and the energy
distribution of the appearing electrons, respectively. The latter is assumed to be monoen-
ergetic and is described as a narrow Gaussian profile ®u9er (v) = (ruy,)~/? e~ @V /u

with normalization [5° ¢ (u)du = 1. The energy of the Auger electrons is U%“9*" and

Uy, = 5eV is the width of the energy distribution.

B. Electron and power balance equations

The relevant electron macroscopic balance equations are derived by appropriate energy
space averaging of the electron Boltzmann Eq. (1). The time dependence of f(u) can be
neglected since the characteristic time for establishment of steady state distribution is of
order of few ns'®, which is two orders of magnitude smaller than the electron beam duration
in large aperature lasers.® Integration of Eq. (1) with respect to the kinetic energy from zero

to infinity leads to the electron particle balance equation:

R = SR+ REZ)+ X R + R = R ®

o4



Here the ionization rates from the valence shell (R{%7) and the inner shell (Ri?) from species
o have been denoted separately. R2"¢" is the Auger electron production rate from the same
species and R is the attachment rate to Fo molecules. These values are given by the

following expressions:

RP°" = /Ooo o™ () v(u) Ny f (u)du

o, U

R = [ i (w)o(w) Nof (u)du
2 0 2

auger __ pion
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beam
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R = /0 ~ 6% (w)o(u) Ni, f (u)du . (3)

2434 The ionization rate

The Auger yield from an inner shell ionization is taken as unity
Rb¢em Ly the external electrons is calculated from the power deposition in the plasma. The
attachment to Fy molecules is the only electron loss process considered. Another potential
electron loss mechanism is dissociative recombination with Ary, Kry and Fy, but the
attachment rate is more than an order of magnitude larger compared to the dissociative
recombination rate. It should be mentioned that the electron particle balance Eq. (2) is
used to constrain the normalization of f(u) and is thus treated as an independent relation,
even though it follows in principle from Eq. (1).

Multiplication of Eq. (1) by the kinetic energy u, followed by integration with respect to

the kinetic energy from zero to infinity leads to the power balance equation,
Phoam = P" + P 4 pot 37 [Pel 4 Pese 4 Plon 4 (Pler — pawser)] (4)
The electron power gain or loss terms are defined as
P = v /Ooo " (w)v(u) Np, f (u)du
pdis = dis /oo 0% (u)v(u) N, f (u)du

0

Pt = /Ooo o (u)v(u) Npuf (u)du
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The electron power gain comprises two terms, that due to beam electrons P, and due
to Auger electrons P9¢". For convenience, the latter is transferred in the right hand side
of the equation. The first, second, and third terms on the right represent power loss in
vibrational excitation, dissociation and attachment to Fy molecules, respectively. The first
term within the sum describes the power loss in elastic electron-atom or electron-molecule
collisions. Then follows the power loss in excitation of Ar, Kr and F,, the power loss in
valence and finally inner shell ionizations. The power balance of electrons in Eq. (4) is not
an independent equation since it follows directly from Eq. (1). It is automatically fulfilled

by a properly normalized solution to the Boltzmann equation.

C. Boundary conditions

Equation (1) is an integro-differential equation and it must be accompanied with bound-
ary conditions. At energy U,qz, slightly exceeding the beam energy, the electron distribu-
tion function is set to zero. The high-energy part of the EEDF is calculated accounting
for inealastic collisions only. The elastic electron-atom and electron-molecule collisions are
neglected due to the small mass ratio and small cross sections at high energy. The Coulomb
collisions between electrons have also been neglected since the electron-electron interaction
cross section decreases rapidly with increasing the kinetic energy. By neglecting the Coulomb
collisions Eq.(1) is no longer an integro-differential equation and f(u) can be directly ob-
tained. The EEDF is calculated backwards, from higher to lower energy, starting with U,
and finishing at appropriate energy U* (=30-40 eV).

The low-energy part of Eq.(1) contains nonlinear terms, namely P(u) and Q(u), and

the Coulomb logarithm term In(L). The latter depends explicitly on the electron density
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and electron temperature. These nonlinear terms and In(L) are treated iteratively. For
each iteration the low-energy part of the EEDF is calculated and the electron density and
mean energy of the bulk electrons are calculated. Then In(L) is updated, assuming that
the electron temperature is 2/3 of the mean energy of the bulk electrons. The nonlinear
coefficients P(u) and Q(u) are also updated with the newly calculated EEDF and added to
the coefficients, resulting from elastic electron-atom and electron-molecule collisions.

At kinetic energy U* we take f(U*) from the high-energy calculation of the EEDF. At
kinetic energy u=0 we take as the boundary condition the normalization of the EEDF in the
low energy region, vis., n; = fOU* f(u)du. The integral is presented as a sum at each grid point
by using, for example, the Simpson’s rule. This sum, involving all unknown descrete values of
the EEDF in the low energy region, provides the second boundary condition®*3¢. Equation
(1) and the boundary condition at kinetic energy u = 0 are reduced to a coupled system
of linear algebraic equations with a tri-diagonal matrix, resulting from the discretization of
Eq.(1), and an additional first row of non-zero elements, resulting from the discretization of
fOU* f(u)du. The system of linear algebraic equations is solved by Gaussian elimination of
the matrix elements below the diagonal and a backsubstitution.

The boundary condition at kinetic energy u = 0 requires the electron density in the low
energy region n} to be known, which is derived from the electron particle balance Eq. (2).
The left hand side of this equation is not authomatically equal to the right hand side and
the equality must be enforced. The left hand side depends mostly on the high-energy part
of the EEDF (u > U*), while the major contribution to the right hand side comes from
the low-energy part of the EEDF (u < U*), which is proportional to n¥. Consequently, n}
can be adjusted so that the only electron loss process, the attachment rate to F» molecules
(the right hand side of Eq. (2)), matches the sum of all ionization rates (the left hand side
of Eq. (2)). The electron density in the low energy region n’ has to be updated after each
iteration, since a weak dependence of the ionization rate on the EEDF in the low energy
region still exists. It should be noted that the total electron density n, is calculated by

integration of the EEDF in the entire energy region. Since the tail of the EEDF is several

12



orders of magnitude smaller compared to the low energy part of the EEDF, n} is only slightly
smaller than n,. An advantage of implementing such a procedure is that the electron particle

balance condition relaxes smootly during convergence.

D. Auger ionization

The inner shell ionization cross section of Ar is about two orders of magnitude smaller
compared to the valence shell ionization cross section. It increases the number of ionizations
by only about 1-2%; however, due to its high energy threshold it contributes significantly
to the power loss, of order of 10-15%. This has a remarkable impact on the energy per
electron-ion pair, since the inner shell ionization is an additional power sink while having
negligible increase of the ionization rate. Estimations show that the energy per electron-ion
pair may increase by about 5 eV only due to the inner shell ionization and become 30 eV
and higher. For comparison, 26.2 eV per electron-ion pair for Ar and 24.3 eV for Kr have
been experimentally observed. Thus the inner shell ionization would result in excesively
high energy per electron-ion pair, unless a counter effect reduces it.

The Auger effect arises from the internal absorption of the radiative decay from an outer
electron shell to the inner shell vacancy formed after an inner shell ionization. The ejected
Auger electron from the L-shell of Ar or the M-shell of Kr has an energy of ~ 10% eV which
provides an additional source of secondary electron production. This compensates the power
loss from inner shell ionization.

As an important ionization channel, the Auger ionization is included in the electron
Boltzmann equation. Two parameters are needed: the energy of the Auger electrons and
the rate at which they appear. If the energy of the emitted Auger photon is assumed to
be equal to the energy of inner shell ionization, and the final state of the atom is a doubly
ionized ion (two electrons have been ejected, one directly and one Auger), the energy of the
Auger electron is the energy difference between the energy of inner shell ionization and the

energy of double ionization, which for Ar and Kr is of order 40 eV.
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In spite of the complex nature of the phenomenon, it is fairly simple to treat the Auger
electrons in the electron Boltzmann equation. Keeping in mind that f(u) is calculated
backwards, from higher to lower energies, the rate for inner shell ionization can be calculated
immediately after the kinetic energy becomes equal to the ionization threshold (UZ’}L =247
eV and U, = 91 eV). Since the Auger electrons appear at lower energies (Ufﬁfﬁw = 202

eV and U ﬁfﬁy = 50 eV), the term accounting for Auger ionization in Eq. (1) is known

because the rate for inner shell ionization has already been calculated.

III. ATOMIC DATA
A. Argon

Electron impact cross sections for Ar, Kr and F, are essential for solving Eq.(1). Com-
pilations of cross sections for use in various Ar plasma models have been gathered since the
early 70’s (Refs. 113773%). The excitation cross sections to individual levels or group of levels
adopted in the present work are shown in Fig. 1a and b, and presented as analytic fits in Ta-
ble I. Cross sections to the four levels of the 4s configuration has either been measured*? 42
or computed?®3%43745 and we have used the results from Ref.2. Individual?6:#45747 and

d39:40:44 excitation cross sections from the ground state to the ten 4p levels are opti-

lumpe
cally forbidden and the cross sections exhibit different behavior. After passing through a
maximum, some of the cross sections fall off slowly, oc u~!, while the fall-off behavior of
others is rather sharp, oc u=3. A reasonable approximation is to divide the levels into two
groups according to their behavior at high energy and use the summed cross section for each
group. They are referred to as Ar(4p)™") and Ar(4p)?. Excitation to the 3d configuration of
Ar is accounted for as a sum of forbidden and allowed cross sections. The optically forbidden

transitions have been measured?® but no data are available for the allowed ones. We used

the Drawin’s formula?® for the latter excitations:
Oars(u) = 47ra§(Ry/Uﬁffe)2fg,g(:v — 1) In(1.25z)z 2. (6)
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Here £ represents the 3d configuration with excitation energy Ug and oscillator strength
from the ground state f,,. Also ay is the Bohr radius and R, is Rydberg’s constant.
v = u/UgS is the electron’s energy relative to the excitation energy. Excitation to the
5s configuration is treated in the same fashion. We have estimated the excitation cross sec-
tion for the 5p configuration according to scaling laws of Sobelman®®. Applying this scaling

to the 4p and 5p states of Ar, one has

exc exc 2 ion exc 3/2
O Ar5p _ UAr,4p UAT,M — Y Ar5p (7)
oexe - [Jexce Uion __ JTexc ’

Ardp Ar,5p Ar,M ArAp

where Uﬂ‘M is the valence shell ionization potential of Ar. Three other groups of levels are
considered in the model: Ar(4d), Ar(6s) and Ar**. The latter comprises all cross sections
between the 6s configuration and the continuum. The electron impact excitation cross
section to each of these configurations is calculated using Eq. 6 with oscillator strengths
from®!. In summary, the set of cross sections for electron impact excitation of Ar comprises
12 cross sections, which should describe fairly accurately the energy deposition in excitation
processes.

The summed cross section for all excitations of Ar is displayed in Fig. 2 along with
the momentum transfer, valence (M) and inner (L) shell ionization cross sections. The
momentum transfer data for Ar is taken from Ref.?2. The valence shell differential ionization
cross section Sff[fM for energies of the primary electron up to 500 eV has been tabulated by
Opal, et al.?®. Green and Sawada?® and Peterson and Allen'# proposed analytical formulae.

The best match to the experimental data by Vroom et al.?! is Bretagne’s'® parameters for

the formula of Green and Sawada:
1’\2
EPSACEEY (8)
(u—ug)?2+T
with A(e) = 2.65 x 107 In(e/UiMy) /€, uo = 1.2 = 250/ (e + 2U%7,), T = 4.6 and Uiy, =

S.aiﬁloﬁM(Q u) = A(G)

15.75. The total ionization cross section oif;fM(e), obtained by integration of the differential
ionization cross section Eq. 8, is in excellent agreement with experimental data?%5%55,
The only inner shell differential ionization cross section SfﬂfL used in calculations of the

electron energy spectra is that suggested by Peterson and Allen'*. We believe their guess is

15



too small based on scaling laws for inner shell ionization by McGuire®®. Our adopted form

is given by

1 r
]7

S (€, u) = oy (€) [tan_l(F/Tmaw) u? +I*

(9)
where [I' = 160 eV. The choice of the width I' is discussed in subsection D. The energy

dependence of o%; (€) is chosen to match McGuire’s results. A reasonable fit of the latter

is given by 0%, (€) = 6.8 x 107"¥(z — 1) In(z)/2?, where z = /U

B. Krypton

The set of individual excitation cross sections employed in this work is displayed in
Fig. 3a and b and prersented as analytic fourmula in Table II. The set of excitation cross

sections for Kr follows the analogous level structure used for Ar. Electron impact excitation

27,40,57—59 427406061 5,

cross sections to individual levels in the 5s configuration and lumpe
states are known, but not to higher states. For the levels in the 5s and 5p configurations
we have used results from a semi-relativistic distorted wave calculation®®. The oscillator
strengths to the 4d and 5d configurations are enormous, of order of unity, which suggests
excessively large cross sections. We have used effective oscillator strengths measured from
energy loss spectra®, rather then optical oscillator strengths.

The summed cross section for all excitations of Kr is displayed in Fig. 4 along with
the momentum transfer, valence (N) and inner shell (M) ionization cross sections. The
momentum transfer data is again taken from Ref.®?. We adopted the differential cross
section for valence shell ionization of Kr from Green and Sawada?’, as given by Eq. (8),
with the fitting parameters: A(e) = 1.87 x 107'%In(e/8.43) /¢, uo = 3.9 — 1000/ (e + 2Ur v),
' = 7.95¢/(e—13.5) and U y = 14.0 eV. The inner shell differential ionization cross section
is calculated in the same manner as for Ar through Eq. (9). The width of the secondary
electrons is assumed to be I' = 60 eV. The total ionization cross section has been taken from

Ref.% and fitted with the function 0% \,(e) = 5.5 x 1077 (z — 1) In(1.25z)/(x* + 5), where

— on
r=e/UREy-
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C. Fluorine

Even though the fractional abundance of fluorine is low in a KrF* amplifier the inelastic
collisions of electrons with fluorine is important for determining the low energy (~few eV)
component of the EEDF and for the disappearance of electrons through attachment. The
cross sections compiled by Hayashi and Nimura® for F, are adopted for this paper and
shown in Fig. 5. Another compilation can be found in Ref.®>. Four vibrational excitation
cross sections are lumped as one effective cross section. Excitation to electronic states a®II,
(threshold 3.16 eV) and A'TI, (threshold 4.34 eV), leading to dissociation of the fluorine
molecule, are lumped together due to their close thresholds. Likewise for the excitations to
C'S} (threshold 11.57 eV) and H'II, (threshold 13.08 V). Such a lumping will not affect
the electron distribution function.

The valence shell differential ionization cross section of Fqy is not avalable. We have
adopted the differential cross section of Ny from Green and Sawada?’, which has the clos-
est ionization potential to that of Fo. The parameters for Eq. (8) are A(e) = 2.28 X
107" In(e/1.74) /€, uo = 4.71 — 1000/ (e 4+ 2U%"™), T' = 13.8¢/(e + Uj") and U™ = 15.69.
The coefficient A has been reduced by a factor 3 from the value for N in order to better
match the total ionization cross section compiled by Hayashi and Nimura®®. The inner shell

ionization of F, has been neglected.

D. Loss function

The analysis of the cross sections continues with the construction of the loss function'

exc exc (u—U;‘fZ)/? ion ion
L) =S Yo ouz+ XX [ Ui + u)Sime udu. (10)
a ¢ a k

The first sum is over all descrete excited states and the second sum is over both the valence
and inner shell ionization states of all species &. The loss function depends mostly on the
cross section for valence shell ionization, but a substantial contribution comes from the inner

shell. For both shells the differential ionization cross section S¥%(e,u) falls of rapidly for
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u > T and the integral in the loss function varies roughly as (U% 4 I'/2)0%(¢). Hence the
width of the differential ionization cross section I' is important for the accurate description of
the loss function. I'is only known for the valence shell ionization and there is no information
in the literature regarding the width of the inner shell differential ionization cross section.
Peterson and Allen' assumed that it is 40 eV for Ar, but since the width of the valence
shell differential ionization cross section is ~ 10 eV'®, approximately 2/3 of the ionization
potential, the width of the inner shell differential ionization cross section may be as large as
160 eV.

One can use the electron stopping power for pure target gases to examine the role of this
width. Using the above cross sections we calculated the Ar and Kr loss function for three
cases: (A) omitting inner shell ionization; (B) using an differential ionization cross section
with width T' = 40 eV; and (B’) with width 160 eV. The results are presented in Fig. 6a
along with the data for the stopping power from Berger and Seltzer '7 calculated using the
Born approximation. It is clear that inner shell ionization must be included; curve (A) is
well below the stopping power for Ar. The better match with Berger and Seltzer’s results
for Ar is with a differential ionization cross section having width I'=160 eV. The growing
difference between curves A, B, and B’ and the stopping power beyond ~200 eV is due to
relativistic effects not included in our cross sections. Similar plots are shown in Fig. 6b for
Kr where curves (B) and (B’) correspond to widths I' = 40 and 60 eV, respectively. The
latter value corresponds to 2/3 of the inner M-shell ionization potential for Kr. In the case
of Kr the Berger and Seltzer’s results can not be reproduced even with the largest width of
the inner shell differential ionization cross section. A possible solution may be the inclusion

of inner L-shell ionization for Kr.
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IV. RESULTS AND DISCUSSION

A. Plasma parameters versus beam power

For the results presented below the target gas is fixed at Ny = 1.80 x 10 cm=3,

Nk, = 8.14 x 10® ecm~3, and N, = 1.25 x 10'” em~3. This composition is typical for the
NIKE KrF* amplifier. The beam power density, Pieqm, and energy, Upeam, are varied to
investigate the dependence of the EEDF and excitation rates on these input parameters.

Results for the normalized EEDF f(u) are presented in Fig. 7a as a function of beam
power from 1 kW/cm? to 1 MW/cm3. The beam energy is kept 650 keV regrdless of the
beam power. The normalized function refers to f(u) = u="/? f (1) /n, which for a Maxwellian
becomes a straight line in a log-linear plot. The high energy part of the distribution is
included in Fig. 7b. At the lowest beam power, 1 kW /cm?®, the degree of ionization is only
~ 1077. Below ~10 eV the EEDF is primarily formed by elastic scattering with Ar and Kx,
attachment and vibrational and electronic excitation with Fy molecules. In particular, the
EEDF turns downwards below ~2 eV due to attachment. The cross section for this process
increases with decreasing kinetic energy (see Fig. 5). Above 2 eV, the elastic scattering has
the opposite effect: it depletes the EEDF as the kinetic energy increases causing f (u) to
pass through a maximum. Dissociation causes further depletion of the electron distribution
function at kinetic energies of ~ 5 €V. In the energy region between 9 and 14 eV excitation
processes with Ar and Kr atoms dominate. The characteristic drop in f(u) at u ~ 10 eV is
clearly evident and reflects loss of electrons at the first excitation potential of the abundant
species Kr (at 9.9 eV) and Ar (at 11.5 eV). Above 14 eV the shape of the EEDF results
from the decay of the beam electrons and secondaries by ionization processes.

At input power density of ~ 100 kW/cm? the degree of ionization increases to ~ 107°.
The Coulomb and elastic electron-atom collisions with Ar and Kr now affect the EEDF in the
low energy region (< 10 e€V) and it trends toward a Maxwellian distribution. Nonetheless,

even at the highest input power considered, 1 MW /em?, f(u) is still not Maxwellian above
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the excitation threshold of Ar. Maxwelization in the whole inelastic region of Ar and Kr
can only be achieved at an input power density of several MW /cm?3.

The tail of the normalized EEDF is formed by ionization processes with Ar and Kr
atoms and decreases as ~ u~'/? in Fig. 7b. The small bumps at 50 eV and 200 eV are
due to the appearance of Auger electrons. Inspite of the progressively decreasing EEDF
and values as small as ~ 107! at energies u >1 KeV, the tail of the distribution function
accounts for ~ 80 — 90% of the ionizations. However, its contribution to other processes,
such as excitation or dissociation of Fj, is negligible. One can conclude that the low- and
high-energy parts of the distribution function play distinctive roles in the discharge kinetics:
ionization is attributed to the high energy part of the EEDF and all other processes to the
low-energy part.

The electron density increases sublinearly with the beam power (Fig. 8a). The mean
energy of the bulk electrons (u) = [ uf(u)du/ne, shown in Fig. 8b, varies by only 10%
as the beam power density increases from 1 kW/cm?® to 1 MW /cm3. This variation in (u)
is due to relaxation of the low energy part of the EEDF resulting from Coulomb collisions
between electrons.

With the calculated EEDF, one can readily evaluate the terms of Eq. (5) entering the
power balance Eq. (4). Fig. 9 shows the relative variation of these terms with beam power.
For simplicity all excitation terms of Ar are summed together and likewise for Kr. The
fractional power deposition for most processes depends weakly on the beam power indicating
that each term in Eq. (4) increases linearly with Pyegr,. In particular, the Maxwelization
of the bulk component of the EEDF with increasing power does not significantly alter the
contibution of the various deposition channels, except for Kr excitation which rises from
~ 10 to ~ 15%. For both Ar and Kr, the largest fraction of the power loss is due to valence
shell ionization. Excitations contribute about a fourth, while the power losses in both inner
shell ionization and elastic collisions account for only few per cent. For inner shell ionization
the net power loss is presented, i.e. Pio", — P4 and Pig",, — Pgid®.

The most significant impact of the beam power on the power deposition can be expected
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for Fy, particlularly for processes with no threshold (elastic scattering and attachment) or
a low energy threshold (vibrational excitation and dissociation). From Fig. 9c the relative
power loss in elastic scattering of electrons with Fy molecules decreses by a factor 3 as the
beam power density increases from 1 kW /cm? to 1 MW /cm3. Over the same increase the
relative power loss in Fy vibrational excitation decreases by about factor two and the relative
power loss in attachment decreases by about 50%. The total power loss attributed to Fy
decreases from 12 to 8 per cent and the decrease of power loss of 4% appears as increase of
power loss due to electron impact excitation of Kr. Note that even though the fraction of
F, is only ~ 0.5%, it accounts for ~10% of the total power loss.

Table III lists the individual contributions to the ionization terms of Eq. (3) in the particle
balance Eq. (2). The values are normalized by the attachment rate R**. The results are
presented at input power of 346 kW /cm?, but they are insensitive with respect t0 Pyegm as
indicated by Fig. 9. The sum of the valance shell ionizations from Ar, Kr, and Fy exceeds
90% and dominates the direct contribution from the e-beam electrons. Some results for pure
Ar are compared with that of Peterson and Allen, which is discussed in subsection (C).

The energy per electron-ion pair is the ratio of the beam power in Eq. (4) to the total
ionization rate in Eq. (2): We = Pyeam/Ri%2. For the chosen composition we find W,; = 24.6
eV, regardless of the beam power. Its variation has been found to be less than 0.1 percent
in the entire power deposition range considered. The weak dependence of W,; versus Pyeam

results as follows. According to Fig. 7b the high energy part of the normalized EEDF f

0.143

noers) while the electron density, as seen from Fig. 8a,

increases with the beam power (P
increases sublinearly (ocPJ:8%). The resultant ionization rate of Eq. (3), with f = n.\/uf,
increases linearly with the beam power which leads to the calculated weak dependence of
the energy per electron-ion pair of the beam power. We further mention that the energy
per electron-ion pair for pure Ar and Kr, calculated with our model, agrees very well with
other measurements. We obtained 25 and 24 eV for Ar and Kr respectively, slightly lower
than 26 and 24 eV reported in most works.

The branching ratios for energy deposition to individual Ar and Kr levels have also been
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investigated. Fig. 10a shows the fractional power loss for each Ar level or group of levels
considered in the model. For Ar, only the levels of the 4s configuration are affected by the
beam power and there is no impact on the deposition channels with energies higher than
4s. The situation for Kr is different as seen in Fig. 10b: the beam power variation has a
strong impact not only on the lowest group of levels, the 5s configuration, but also on the
two channels leading to the 5p configuration. This effect results from the Maxwellianization
of the EEDF below ~ 10 eV due to the increase in ionization fraction with P, and the
consequent increased role of the electron Coulomb collisions. Our results differ from Peterson
and Allen’s, particulraly for the 4s levels. The excitation rates and energy deposition to
the 4s levels are larger than Peterson and Allen’s results due to the different approach for
calculating the electron energy degradation spectra. Further discussion of the deposition
rates in pure Ar will be presented in subsection (C).

Consider the sum of all excitation efficiencies for Ar from Fig. 10a and likewise for Kr
from Fig. 10b. Upon dividing by the total ionization efficiency one obtains the separate

excitation-to-ionization ratios

exe
772“ = ion Zfiona,f auger (11)
Ra,v + Ra,i + Ra

for & =Ar, Kr in the specified mixture. These ratios are displayed in Fig. 11 as a function of
the beam power. The total ionization rate includes not only valence shell ionzations for both
Ar and Kr, but also the contribution from the inner shell and Auger ionization. While the
excitation-to-ionization ratio of Ar remains weakly dependent on the beam power density,
for Kr it increases from 0.54 at low beam power density to 0.80 at the highest beam power
density of 1 MW /cm3. Because the energy per ion-electron pair is nearly independent of the
beam power, the rise in the Kr excitation efficiency reflects the change seen in the individual
levels of Fig. 10b. Peterson and Allen found an excitation-to-ionization ratio for Ar of
NG’ ~0.28. In KrF kinetic models it has been assumed that a similar ratio holds for Kr.
The excitation-to-ionization ratio we compute in a mixture of 68.5%Ar+31%Kr+0.5%F, is

significantly higher: 0.38 - 0.41 for Ar, and 0.54 - 0.8 for Kr, as the power density increases
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from 1 kW/cm? to 1 MW/cm?®.

B. Plasma parameters versus beam energy

In a laser amplifier the choices of the beam energy, target gas pressure, and size are
selected to provide a uniform deposition. For example, if either the gas pressure or plasma
dimensions increase, the beam energy must also be adequately increased. Too low a beam
energy causes nonuniform volume pumping, while an excessive beam energy leads to elec-
trons traversing the plasma without depositing their energy. The determination of the beam
energy is often done using the stopping power of Berger and Seltzer !” which is provided
above 10 keV. It is of interest to know whether the EEDF and the deposition channels
change with beam energy.

The EEDF for Uyeqr, =1, 10, 100, 650 keV and fixed input power (346 kW /cm3) is shown
in Fig. 12. The low energy part of the EEDF (below 200 eV) does not depend on the beam
energy at all and the electron density and the mean energy of the bulk electrons are found
to be independent of the beam energy and their variation with the beam energy is within
0.1%. The high energy part is obviously sensitive to the beam energy, which is the maximum
value. Since the extended distribution function for large Upe,,n compensates for the sharp
increase in f at 1ow Upeam, the ionization rate is independent of the beam energy, as long as
the input power is kept the same. Naturally, the energy per ion-electron pair, which is the
ratio of the input power to the inization rate, is also independent of the beam energy. The
rates of the other elementary processes are the same within ~1%.

In the calculations so far we assumed that the electron beam traversing the plasma is mo-
noenergetic. Since the beam electrons must pass through a foil before entering the KrF am-
plifier, the beam will emerge into the target gas with possibly a broad energy spectrum. We
investigated whether the energy spread of the primary beam affects the energy deposition.
The plasma deposition obtained from a monoenergetic beam with u,, = 0.01Upeqm, Was com-

pared with ones having much broader energy spectrum of u,, = 0.1Upeq and uy, = 0.3Upeqm -
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No changes were observed in the EEDF or the rates for elementary processes. We can
conclude that, as long as the beam electrons have energies above ~ 10 keV, whether the
electron beam entering the plasma is monoenergetic or not is not significant for the energy

deposition.

C. Comparison with the continuous slowing down approximation

The CSDA is appropriate in the limit of zero electron density where the thermal relax-
ation by electron Coulomb or electron-atom elastic scattering does not play a role. Thus one
can simulate a discrete version of the CSDA in a Boltzmann model by neglecting Coulomb
collisions between electrons. To compare the two approaches, we have solved the Boltz-
mann equation subject to a fixed degree of ionization: in the first case with a value typical
for e-beam deposition (4 X 107°) and in the second with a vanishing degree of ionization.
Excitation and ionization processes were retained in both cases as well as elastic losses by
electron-atom collisions. The CSDA does not truly include these latter collisions, but we
included them as part of a modified CSDA to isolate the important effects of Coulomb
collisions and to properly describe the EEDF near the lowest excitation threshold.

The EEDF’s, calculated by solving the electron Boltzmann equation and the modified
CSDA in pure Ar plasma, are shown in Fig. 13a. The beam energy is Upeam=10 keV.
For energies slightly exceeding the threshold for valence shell ionization the solution of
the electron Boltzmann equation is the same as the modified CSDA, which explaines why
the energy per ion-electron pair calculated using the CSDA is in good agreement with
Boltzmann models. On the other hand, in the energy region between the first excitation and
the ionization thresholds the EEDF is strongly influenced by electron Coulomb collisions.
The modified CSDA is inconsistent with the Boltzmann model in this energy region and
the electron impact excitation rates cannot be accurately calculated. To better display
the difference between the solutions of the CSDA and the electron Boltzmann equation,

Fig. 13b shows the ratio of the EEDF’s calculated by the modified CSDA and the electron
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Boltzmann equation. As it can be seen, the simulated CSDA is very inaccurate between
the first excitation threshold and the ionization energy and the deviation from the EEDF
computed with the electron Boltzmann equation reaches a factor five. As a consequence,
the branching ratios for energy deposition by various Ar excited states differ between the
CSDA and the Boltzmann model.

Table IV lists the power deposition in elastic collisions, excitation, valence and inner
shell ionization between the two approaches for the EEDF of Fig. 13. Since the EEDF from
the CSDA coincides with that calculated from the electron Boltzmann equation above the
ionization threshold, the fractional power loss in both valence and inner shell ionization is the
same. However, the power loss in elastic collisions calculated from the electron Boltzmann
equation is only 5-6%, while the elastic power loss calculated with the modified CSDA is
15-16%, three times larger. The power loss in excitation, as calculated by the CSDA is only
20%, whereas from the Boltzmann model it is about 30%. Thus the modified CSDA tends
to overestimate the power loss in elastic collisions and underestimate of the power loss in
excitation. The inaccurate power deposition of the CSDA leads to serious implications in
the kinetic modelling of a KrF laser amplifier, because a major role in formation of KrF* is
played by the electron impact excitation processes.

The differences in the power deposition can be outlined in detail if the results from
our Boltzmann code are compared with Peterson and Allen’s CSDA and Bretagne et al.’s
approach (which neglected electron-atom and Coulomb collisions). These differences are
particularly prominent for the 4s configuration. The power loss in excitation of the 4s levels,
calculated with our Boltzmann code, is 16%, while Peterson and Allen report only 6%
and Bretagne et al. - 9%. Peterson and Allen consider only excitation to both resonance
states neglecting excitations to the metastable states (or, rather, adding the latter to the
composite forbidden trasitions), which may explain their lower value compared to Bretagne
et al. The difference between the present calculations and Bretagne et al. results are due
to the phenomena described in the former paragraph, namely, the Maxwelization of the

EEDF and the presence of more electrons beyond the excitation threshold of Ar compared
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to CSDA. The results for the 4p configuration are in closer agreement: our calculations
show a power deposition of 6.4%, Peterson and Allen report 5% and Bretagne et al. - 4%.
The power deposition to the 3d configuration is the same as Peterson and Allen. Obviously,
the largest differences in the power deposition occur for the lowest lying levels, where the
effect of maxwelization of the EEDF is most prominent. For levels close to the continuum
the difference between the simulated CSDA and the solution of the electron Boltzmann
equation is gradually reduced. Thus our results demonstrate that the solution of the electron
Boltzmann equation is more accurate than the CSDA. The comparison also demonstrates the
importance of the elastic elecron-electron collisions. If neglected, the EEDF resembles the
electron energy degradation spectra of the CSDA. This is the case with the approach used
by Bretagne et al. Even though they use a Boltzmann code, the EEDF is fairly consistent
with the distribution function calculated with the CSDA, due to the lack of elastic collisions.
The indiviual contributions to the ionization terms of Eq. (3) in the particle balance
Eq. (2) for pure Ar can be compared with that of Peterson and Allen. We found that
/R4ty = 0.019, while Peterson and Allen’s value is 0.0046. The sole reason for
this difference lies in the adopted cross section for inner shell ionization: the cross section
used in this work is approximately four time larger compared to Peterson and Allen’s cross
section. This explains the four times larger ratio of inner to valence shell ionization rate we
calculate as compared to Peterson and Allen. In either case the contribution of the inner
shell ionization in the particle balance is negligible, but the fundamental role the inner shell
ionization plays is not limited to that. It affects the energy per ion-electron pair, which
is one of the most important charcteristics of any e-beam sustained plasma, and matching
experimentally observed values is one of our primary objectives. According to its definition,
the energy per ion-electron pair is a result of an interplay between power loss and ionization
rate. As already mentioned, Peterson and Allen’s ionization rate increases only by about
0.5% due to inner shell ionization. The power loss, however, increases by about 7.5% and
Peterson and Allen calculate an energy per ion-electron pair of W,; = 29 eV; larger then the

reported 26 eV. Peterson and Allen made only a guess for the inner shell ionization cross
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section, which is too small. Even though they underestimated the role of the inner shell
ionization, their value for the energy per ion-electron pair is larger than the experimental
value. For the improved cross sections the power loss due to inner shell ionization becomes
~30% of the beam power, which, in the absence of other processes, gives an W,; above 30
eV. The solution must incorporate Auger ionization, which further enhances the ionization
rate and heats the electrons, an effect, opposite to the inner shell ionization. With the Auger
ionization accounted for, the energy per ion-electron pair for pure Ar calculated in this work
is 25 eV, in close agreement with data (26.2 eV). Bretagne et al. computed ~26 eV for
the energy per ion-electron pair, but did not take into account the inner shell ionization.
Neither Peterson and Allen nor Bretagne et al. considered Auger ionization. The analysis
clearly shows that both the inner shell and Auger ionizations must be taken into account.
A comparison with Peterson and Allen and Bretagne et al. can help outline another
difference. As mentioned in the Introduction, Peterson and Allen calculated excitation-
to-ionization ratio %' ~0.28. Bretagne et al. got a slightly higher value, n%° ~0.35.
These two values are close because, as explained above, the approaches used in both articles
are almost identical. Our excitation-to-ionization ratio at negligible degree of ionization
is 9% ~0.38, very close to that reported by Bretagne et al. But at degree of ionization
(4 x 107°) (typical for most e-beam deposistion plasmas), we calculated n%¢ ~0.61, which is
twice higher compared to both Peterson and Allen and Bretagne et al. The reason for such

a high value is again the impact of the Coulomb collisions between electrons on the EEDF.

V. SUMMARY

Electron impact ionization and excitation resulting from e-beam deposition has been
evaluated using the electron energy distribution function calculated from the steady state,
spatially independent, electron Boltzmann equation. The chosen target gas is appropriate to
a KrF* laser amplifier: 68.5% Ar, 31% Kr, and 0.5% F5 at atmospheric density. The beam

energy was varied from 1 to 650 keV and the beam power density from 1 to 1000 kW /cm3.
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Interactions of the beam electrons and all generations of secondaries were followed down
to an energy of 0.01 eV. The degradation processes included 12 excitations channels from
ground state Ar (Fig. 1) and likewise for Kr (Fig. 3). The valence and inner shell ionizations
for both Ar and Kr were treated with energy differential cross sections. The low energy
component of the distribution function, i.e., below the first excitation thresholds of Ar and
Kr, was subject to Fy vibrational excitation, electronic excitation, molecular dissociation,
and attachment (Fig. 5). Valence shell ionization of Fy was also treated. The electron density
and the mean energy of the bulk electrons were calculated self-consistently since electron
attachment with Fy is the dominant electron loss process. Coulomb collisions between
electrons act to Maxwellianize the distribution function as the electron density increases
with Pyeom (Fig. 7).

The assumption of the present Boltzmann model is that electron collisions with the
ground state species of Ar, Kr, and Fy are primarily responsible for shape of the EEDF.
Though interactions of the beam and secondary electrons with excited state species and
other rare gas molecules occur, the density of the these latter species is about four orders
of magnitude smaller than ground state Ar and Kr. The contributions to ionization by
electron collisions with excited species is about 10%. For instance, at Pheqm =300 kW /cm3,
Fig. 8 indicates n,=4x10'* cm™2 and an average bulk electron energy of 2.7 eV. Using the
ionization rate coefficients for Ar* and Kr* from Ref.® and an excited state density of 10'°

3s~1 The rate from

cm~3, we find an ion production rate from excited states of ~5x10%'cm™
the beam is Ppegm/Wei~8Xx10%2cm 351,

One objective of the research was to match both the data for the energy per ion-electron
pair as well as the stopping power results from Berger and Seltzer. This was accomplished
by addressing two aspects of inner shell ionization. The first is Auger emission following
each inner shell ionization event. Though the latter process does not add significantly to
the total ionization rate, it leads to a value for W,; in pure Ar of over 30 eV due to the large

energy loss. The inclusion of Auger emission returns the lost energy as an energetic electron

which produces further ionization. The resulting value of W,; for Ar is 25.0 eV, close to
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the experimental data of 26.2 eV. In pure Kr we find W,; = 23.9 eV while the data is 24.2
eV. For the KrF* mixture the energy per ion-electron pair is calculated as 24.6 V. In all
cases Wei = Pyeam/ Rﬁg? is found to be independent of the beam power density and energy
even though the distribution function f does change with these parameters. The sublinear
increase in the electron density with beam power (Fig. 8) coupled with the slight increase in
f (Fig. 7) leads to an ionization rate R¥? which is proportional to Phean- The second aspect
is the width of the energy differential cross section for inner shell ionization. In the absence
of L-shell ionization, the calculated loss function of Ar is a factor of two below the value
of Berger and Seltzer at 10 keV. When the width is set at 2/3 of the Ar L-shell ionization
potential, as is the case from experiments on M-shell ionization, then the loss function agrees
with the stopping power Fig. 6a. A similar procedure for Kr shows some improvement, but
not as dramatic and may indicate the need to consider not only the inner M-shell but also
the L-shell ionization.

A second objective was the detailed treatment of the excitation efficiencies for Kr by
an e-beam in a realistic KrF* mixture. This has not been studied before. The Boltzmann
solution indicates that the EEDF is sensitive to the beam power density due to electron
Coulomb collisions coupled with the increase in electron density as Py, rises. It accounts
for the relaxation of the distribution function near the lowest excitation thresholds of Ar and
Kr and influences the excitation efficiency. Such an effect cannot be treated by either the
CSDA nor a reduced Boltzmann model. At low beam power density the summed excitation-
to-ionization ratio is 0.38 for Ar and rises to 0.41 as Pyeqr, increases to 1 MW /cm?® (Fig. 11).
Over the same range of Py, the calculated ratio for Kr increases from 0.54 to 0.8. The
excitation ratio for Kr is significantly larger than the values used in existing kinetic models
for e-beam driven KrF* amplifiers.

The increase of the beam excitation rate as concluded here can have several effects upon
models for the KrF kinetics in an amplifier. First, there is an increase in the KrF* pumping
rate through the harpoon reaction Kr* + F, and KrF* + F. Also excited Ar undergoes a

similar harpoon reaction to form ArF* and the latter species leads to KrF* through the
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displacement reaction: ArF* + Kr and KrF* + Ar. Second, the enhanced beam formation
rate of excited states increases the absorption of the lasing photons. A. Mandl, ef al.®
found that the photo-absorption of Ar and Kr excited states was nearly equal to that of
the dominant absorber, F~. Their model is based on an excitation-to-ionization ratio of
only 0.3, significantly less than what has been calculated here. Third, the two harpoon
reactions mentioned above contribute to the depletion of Fy, though this is of secondary
importance compared to dissociative attachment of F5,. Inclusion of the enhanced excitation-
to-ionization ratio in a KrF kinetics model would likely require adjustment to other reaction
rates in order to reproduce agreement with experiments as found with kinetic models using

lower excitation-to-ionization ratios.

ACKNOWLEDGMENTS

We wish to thank John Sethian and Steve Obenschain of the Laser Physics Branch at

NRL, Steve Swanekamp of JAYCOR, Stu Searles of RSI and Paul Kepple of the Plasma
Physics Branch for many fruitful discussions related to e-beam deposition. This work was

supported by the US Department of Energy, Defense Programs.

30



REFERENCES

'L.A. Rosocha and K.B. Riepe, Fusion Technology 11, 576 (1987).

2].D. Sethian, C.J. Pawley, S.P. Obenschain, K.A. Gerber, V. Serlin, C.A. Sullivan, T.
Lehecka, W.D. Webster, M.W. McGeoch, I.D. Smith, P.A. Corcoran, and R.A. Altes,
IEEE Trans. Plasma Sci. 25, 221 (1997).

3J.D. Sethian, S.P. Obenschain, K.A. Gerber, C.J. Pawley, V. Serlin, C.A. Sullivan, W.D.
Webster, A.V. Deniz, T. Lehecka, M.W. McGeoch, R.A. Altes, P.A. Corcoran, I.D. Smith,
and O.C. Barr, Rev. Sci. Instrum. 68, 2357 (1997).

4J.D. Sethian, M. Meyers, I.D. Smith, V. Carboni, J. Kishi, D. Morton, J. Pearce, B.
Bowen, L. Schlitt, O. Barr, and W. Webster IEEE Trans. Plasma Sci. 28, 1333 (2000).

® A. Suda, M. Obara, and A. Noguchi, Fusion Technology 11, 548 (1987).

6 M.W. McGeoch, P.A. Corcoran, R.G. Altes, I.D. Smith, S.E. Bodner, R.H. Lehmberg,
S.P. Obenschain, and J.D. Sethian, Fusion Technology 32, 610 (1997).

"W.L. Morgan and A. Szoke, Phys. Rev. A 23, 1256 (1981).
8 A. Mandl, D. Klimek, and J.H. Parks, J. Appl. Phys. 55, 3940 (1984).
9F. Kannari, M. Obara, and T. Fujioka, J. Appl. Phys. 57, 4309 (1985).

108.J. Czuchlewski, D.E. Hanson, B.J. Krohn, and A.R. Larson, Fusion Technology 11, 560
(1987).

"' M.W. McGeoch, in Naval Research Laboratory, Report No. NRL/PU/6730-94-264, 1994
(unpublished).

12 G.N. Whyte, Radiation Res. 18, 265 (1963).
B L.G. Christophorou, it Atomic and Molecular Radiation Physics (Wiley-Interscience, Lon-

don, 1971), p.35.

31



" L.R. Peterson and J.E. Allen, Jr., J. Chem. Phys. 56, 6068 (1972).
15 L.R. Peterson, Phys. Rev. 187, 105 (1969).

161, R. Peterson, T. Sawada, J.N. Bass, and A.E.S. Green, Comp. Phys. Comm. 5, 239
(1973)

17M.J. Berger and S.M. Seltzer, ” Tables of Losses and Ranges of Electrons and Positrons,”

NASA Report No. SP-3012, 1964 (unpublished).
18D.C. Lorents, Physica 82C, 19 (1976).

19J. Bretagne, G. Delouya, J. Godart, and V. Puech, J. Phys. D: Appl. Phys. 14, 1225
(1981).

20 A.E.S. Green and T. Sawada, J. Atmospheric and Terrestrial Phys. 34, 1719 (1972)
21D.A. Vroom, R.L. Palmer, and J.Wm. Mc Gowan, J. Chem. Phys. 66, 647 (1977).

2 H.C. Straub, P. Renault, B.G. Lindsay, K.A. Smith, and R.F. Stebbings, Phys. Rev. A
52, 1115 (1995).

2 Dayayshankar, Physica 111C, 134, (1981).

2 Dayayshankar, M.A. Prasad, and K. Unnikrishnan, Physics Lett. 90A, 402, (1982).
% C.J. Elliott and A.E. Greene, J. Appl. Phys. 47, 2946 (1976).

% J.E. Chilton, J.B. Boffard, R.S. Schappe. and C.C. Lin, Phys. Rev. A 57, 267 (1998).
27 J.E. Chilton, M.D. Stewart, Jr., C.C. Lin, Phys. Rev. A 62, 032714-1 (2000).

2 A. Dasgupta, M. Blaha, and J.L. Giuliani, Phys. Rev. A 61, 012703-1 (1999).

2 D.R. Suhre and J.T. Verdeyen, J. Appl. Phys. 47(10), 4484 (1976).

3 JW. Keto, J. Chem Phys. 74, 4445 (1981).

31 F. Kannari and W.D. Kimura, J. Appl. Phys. 64, 500 (1988).

32



32§ P. Slinker, R.D. Taylor, and A.W. Ali, J. Appl. Phys. 63, 1 (1988).

33 S.P. Slinker, A.W. Ali, and R.D. Taylor, J. Appl. Phys. 67, 679 (1990).

31S.C. Soong, Radiation Research 67, 187 (1976).

% D. Loffhagen and R. Winkler, J. Comp. Phys. 112, 91 (1994).

% D. Uhrlandt, M. Schmidt, and R. Winkler, Comp. Phys. Comm. 118, 185 (1999).
3T E. Eggarter, J. Chem. Phys. 62(3), 833 (1975).

38 G. M. Petrov and C.M. Ferreira, ” A Collisional-Radiative Model for Argon Discharges at
Intermediate and High Pressures”, Internal Report CFP 10/97, Instituto Superior Tcnico,

Lisbon Technical University, Portugal.
39 A. Bogaerts, R. Gijbels, and J. Vlcek, J. Appl. Phys. 84(1), 121 (1998).
40 M. Hayashi, private communication.
1 K. Tachibana, Phys. Rev. A 34, 1007 (1986).

42R.S. Schappe, M.B. Schulman, L.W. Anderson, and C. C. Lin, Phys. Rev. A 50, 444
(1994).

43 N.T. Padial, G.D. Meneses, F.J. da Paix@o, and Gy. Csanak, Phys. Rev. A 23, 2194
(1981).

# A. Chutjian and D.C. Cartwright, Phys. Rev. A 23, 2178 (1981).

45 D.H. Madison, C.M. Maloney and J.B. Wang, J. Phys. B: At. Mol. Opt. Phys. 31, 873
(1998).

4 J K. Ballou, C.C. Lin, and F.E. Fajen, Phys. Rev. A 8, 1797 (1973).

171.P. Bogdanova, V.D. Marusin, and V.E. Yakhontova, Opt. Spectrosk. (USSR) 44(4), 368
(1978).

33



%8 J E. Chilton and C.C. Lin, Phys. Rev. A 60, 3712 (1999).
9 H.W. Drawin, Z. Physik 225, 483 (1969).

S01.I. Sobelman, L.A. Vainstein and E.A. Yukov, ”Excitation of atoms and broadening of

spectral lines”, Springer-Verlag, Berlin, 206 (1981).
5L C.M. Lee and K.T. Lu, Phys. Rev. A 8, 1241 (1973).
2§ K. Srivastava, H. Tanaka, A. Chutjian, and S. Trajmar, Phys. Rev. A 23, 2156 (1981).
53 C.B. Opal, E.C. Beaty, and W.K. Peterson, At. Data 4, 209 (1972).
% D. Rapp and P. Englander-Golden, J. Chem. Phys. 43, 1464 (1965).
% R.S. Freund, R.C. Wetzel, R.J. Shul, and T.R. Hayes, Phys. Rev. A 41, 3575 (1990).
% .J. McGuire, Phys. Rev. A 16, 73 (1977).
5TH. Date, Y. Sakai and H. Tagashira, J. Phys. D: Appl. Phys. 22, 1478 (1989).
%8 §. Trajmar, S.K. Srivastava, H. Tanaka, and H. Nishimura, Phys. Rev. A 23, 2167 (1981).
% G.D. Meneses, F.J. da Paixao, and N. T. Padial, Phys. Rev. A 32, 156 (1985).
80 1.P. Bogdanova and S.V. Yurgenson, Opt. Spectrosk. (USSR) 62(3), 428 (1987).

61S. Kaur, S. Srivastava, R.P. McEachran, and A.D. Stauffer, J. Phys. B: At. Molec. Phys.
31, 4833 (1988).

62 A. Dasgupta, K. Bartschat, D. Vaid, A.N. Gram-Grzhimailo, D.H. Madison, M. Blaha,
and J.L. Giuliani, to be submitted to Phys. Rev. A (2001).

8 A. Delage and J-D Carette, J. Phys. B: Atom. Molec. Phys. 9, 2399 (1976)
64 M. Hayashi and T. Nimura, J. Appl. Phys. 54(9), 4879 (1983).

8 W.L. Morgan, Plasma Chem. Plasma Proc. 12(4), 449 (1992)

34



FIGURES

FIG. 1. Excitation cross sections of Ar for allowed (a) and forbidden (b) transitions.

FIG. 2. Total excitation, momentum transfer, inner and valence shell ionizaton cross sections

for Ar.

FIG. 3. Excitation cross sections of Kr for allowed (a) and forbidden (b) transitions.

FIG. 4. Total excitation, momentum transfer, inner and valence shell ionizaton cross sections

for Kr.

FIG. 5. Momentum transfer, attachment, vibrational excitation, electronic excitation, dissoci-

ation and ionizaton cross sections of Fo.

FIG. 6. (a) Loss function of Ar calculated without inner shell ionization (A) and with inner
shell ionization having an energy width I'=40 eV (B) and 160 eV (B’). For comparison, the electron
stopping power from Berger and Seltzer is also plotted. (b) Similar calculation for Kr using an

energy width of I'=40 eV (B) and 60 eV (B’).

FIG. 7. EEDF at beam power varying from 1 kW/cm?® to 1 MW /cm3 for p4,=562.5 Torr,

Prr=254.4 Torr, pr,=3.9 Torr and Upeam =650 keV.

FIG. 8. Electron density (a) and mean energy of the bulk electrons (b) versus beam power.

The discharge parameters are the same as in Fig. 7.

FIG. 9. Fractional power loss in collisions with Ar (a), Kr (b) and Fo (c). The discharge

parameters are the same as in Fig. 7.

FIG. 10. Branching ratios for energy deposition on individual Ar (a) and Kr (b) excited states.

The discharge parameters are the same as in Fig. 7.
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FIG. 11. Total excitation-to-ionization ratios for Ar and Kr. The discharge parameters are the

same as in Fig. 7.

FIG. 12. EEDF at beam energy of 1 KeV, 10 KeV, 100 Kev and 650 KeV for p4,=562.5 Torr,

pir=254.4 Torr, pr,=3.9 Torr and Pyegm =346 kW /cm3.

FIG. 13. EEDF in Ar at degree of ionization 4 x 10~% (full line) and zero (dashed line).
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TABLES

TABLE I. Ar electron impact excitation cross sections from the ground state, z = u/AE.

final state o(em™?) AE (eV) f ref
Ar(4s[3/2]2) 4.0 x 1071%(z? — 1)(2% + 50)~1 11.548 28
Ar(4s[3/2]1) 7.0 x 10718(z — 1)(In(1.25z) + 5)z~ 11.624 28
Ar(4s'[1/2]o) 6.5 x 10717 (22 — 1)(z® + 40)~! 11.723 28
Ar(4s'[1/2],) 8.9 x 1071 7(z — 1) In(1.25z)z~ 11.828 28
Ar(4p)™ 1.3 x 107 (z — 1)z~ 12.907 28
Ar(4p)® 1.9 x 1076(z* — 1) (2" 4 20) 71 12.907 28
Ar(3d) 6.9 x 10717 (z — 1) In(1.25z)z 2 13.845 2.03 x 1071 49

+6.5 x 10717 (2?2 — 1)(z*2? +0.2)~! 48
Ar(5s) 1.3 x 10717(z — 1) In(1.25z) 22 14.068 4.04 x 1072 49

+1.6 x 10717 (2?2 — 1)(z*5 +0.7) 71 48
Ar(5p) 0.350 Ar(4p) 14.164 50
Ar(4d) 2.0 x 1071 (2 — 1) In(1.252) 22 14.711 6.70 x 102 49
Ar(6s) 9.3 x 1071 7(z — 1) In(1.25z)z 2 14.839 3.14 x 1072 49
Ar** 1.4 x 10717(z — 1) In(1.25z) 22 15 4.71 x 1072 49
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TABLE II. Kr electron impact excitation cross sections from the ground state, z = u/AE.

final state o(em™2) AE (eV) feff ref
Kr(5s[3/2]2) 1.8 x 10716 (23 — 1)(2%5 4 35) 1 9.915 62
Kr(5s[3/2]1) 1.0 x 10~ (2 — 1) In(1.25z) 22 10.033 62
Kr(5s'[1/2]o) 2.8 x 10717 (23 — 1)(%8 4 70) ! 10.563 62
Kr(5s'[1/2];) 5.3 x 10717 (z — 1) In(1.25z)z 2 10.644 62
Kr(5p)M) 1.3 x 107 6(z — 1)z~23 11.303 62
Kr(5p)® 4.0 x 10716(z* — 1)(z™® + 30)~! 11.303 62
Kr(4d) 7.2 x 10717 (z — 1) In(1.25z)z 2 12.04 1.60 x 10~! 49
Kr(6s) 7.7 x 107V (2 — 1) In(1.252) 22 12.35 1.80 x 1071 49
Kr(6p) 0.250 g r(5p) 12.50 50
Kr(5d) 5.1 x 1071 (z — 1) In(1.25z)z 2 12.87 1.30 x 1071 49
Kr(7s) 4.2 x 10717 (z — 1) In(1.25z)z 2 13.11 1.10 x 1071 49
Kr** 3.2 x 10717(z — 1) In(1.25z)z~2 13.30 8.80 x 1072 49
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TABLE III. Fractional contribution of ionization terms in the particle balance Eq. (2). The

beam power and energy are 346 kW /cm3 and Upeq,, =650 keV, respectively

specie ion %
Ar M shell 55.0
Ar L shell 1.4
Ar Auger 1.4
Kr N shell 39.4
Kr M shell 1.3
Kr Auger 1.3
Fo 0.2
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TABLE IV. Fractional power loss (in percent) for the electron Boltzmann equation (BE) and

the simulated Continuous Slowing Down Approximation (CSDA)

process BE CSDA
elastic 5.5 16.3
excitation (total) 30.5 19.6
ionization (valence shell) 60.6 60.7
ionization (inner shell) 3.4 3.4
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